
Statistical Capacity and Corrupt Bureaucracies

Manuel Oechslin∗ Elias Steiner†

— PRELIMINARY DRAFT —

October 1, 2019

Abstract

In many developing countries, economic statistics (such as the growth rate of GDP)

are highly imprecise, making it difficult to evaluate economic reforms and learn “what

works”. Improving economic statistics has thus become a top priority of development

organizations. However, in this paper, we isolate an insidious mechanism—a type of

“observer effect”—by which a push for better statistics can make matters worse. Precise

statistics require the collection of data from a large number of firms. If firms suspect that

detailed information, when spreading through the bureaucracy, is misused to exact bribes,

they have weaker incentives to invest. As a result, the effects of reforms are muted, making

it even harder to discover what works. To suppress this mechanism, efforts to improve

economic statistics should be comprehensive and also include institutional measures.
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The census has nothing to do with taxation, with army or jury service [...], nor

can any person be harmed in any way by furnishing the information required.

—President W.H. Taft, 1910 Census Proclamation

1 Introduction

In many developing countries, economic statistics such as the growth rate of GDP, the inflation

rate, or the unemployment rate are highly unreliable. For example, in a widely noticed book,

Jerven (2013) documented that the quality of African GDP numbers is extremely “poor”. At

the same time, the World Bank’s then chief economist for Africa referred to the deficient state

of African economic statistics as a “statistical tragedy” (Devarajan, 2013). It is therefore no

surprise that improving developing countries’ statistics has become a priority of international

organizations, among them the World Bank, the IMF, and the OECD. These organizations

pursue their objective through initiatives like the “Partnership in Statistics for Development

in the 21st Century” (or PARIS21), a group concerned with technical issues and the funding of

data collection and processing in poor countries. More recently, the push for better statistics

in developing countries has gained additional momentum through the rise of digitalization and

big data.1 Under the umbrella of the UN Global Working Group for Big Data in Official

Statistics (or GWG Big Data), both developing and advanced countries exchange experiences

on how to use big data to improve economic statistics.

In many ways, improvements in the precision and availability of economic statistics would

be highly welcome. Reliable numbers are important for an appropriate conduct of monetary

policy (e.g., Orphanides, 2003). Beyond that, considering that concepts such as “growth diag-

nostics” (e.g., Rodrik, 2010) and “experimentation at scale” (e.g., Muralidharan and Niehaus,

2017) have gained ground, accurate statistics are of increasing importance in the context of

development policy. Growth diagnostics, for instance, is based on the notion that—when it

comes to incremental reforms—which reforms work and which do not is highly context-specific,

i.e., depends on a country’s economic and institutional status quo. Therefore, as Rodrik (2010,

p. 41) puts it, growth diagnostics “emphasizes experimentation as a strategy for discovery of

what works, along with monitoring and evaluation.”

A condition for meaningful monitoring and evaluation is the availability of accurate eco-

nomic statistics. If the numbers are poor, evaluation may become impossible or may lead to

erroneous conclusions about what works (Manski, 2015). This paper does not deny that good

1Digitalization and big data are trends that are by no means confined to economically advanced countries.

See, e.g., Demirgüç-Kunt et al. (2015) on the increasing importance of mobile banking in developing countries.

2



economic statistics have many benefits. However, focusing on development policy and growth

statistics, we isolate an insidious mechanism by which in developing countries a push for better

statistics can have harmful side effects. This mechanism—a type of “observer effect”—reduces

the benefits or may even reverse them into net losses. Our analysis implies that efforts to

improve developing countries’ statistics should not have a narrow focus on technical statistical

capacity (i.e., data gathering); rather, such efforts should be comprehensive and also include

institutional aspects (e.g., data confidentiality). It is key that there be a symmetry between

technical statistical capacity and the strength of the institutional setting.

Our argument is based on three observations. First, strengthening technical statistical

capacity to improve the accuracy of GDP statistics necessarily means collecting more data. It

includes a move to a regular economic census schedule and the enlargement of the firm surveys

that underlie GDP estimates between the censuses (see, e.g., Berry et al., 2018; Jerven, 2013, p.

26). Second, although there often are official guarantees of confidentiality of census and survey

data, a large number of reports on the handling of government-collected data suggest a grave

risk of confidentiality breaches2 that may allow detailed data (e.g., on firm revenues) to spread

widely within the bureaucracy and beyond. The reasons for this include weak governance and

the prevalence of IT security holes. By one estimate from 2017, more than 80% of public sector

institutions in Kenya do not even have the means to detect network intruders.3 Third, control

of corruption is weaker in low-income countries (e.g., Olken and Pande, 2012), and corrupt

officials use information on firm characteristics to “bribe discriminate” (Svensson, 2003), with

the result that larger firms pay higher bribes (e.g., Bai et al., 2019).

Connecting these observations, a push to strengthen technical statistical capacity must

arouse fears among firms of higher bribery costs: with larger surveys, each firm faces a higher

chance of being sampled and, given the possibility of a confidentiality breach, a higher chance of

being subject to roughly proportional bribe demands from somewhere within the bureaucracy.

The expectation that, in fact, the official confidentiality (and no-harm) assurances may not hold

weakens firms’ incentives to invest. But if firms invest less, the effects of economic reforms will

be muted. As a result, although the improved statistics reduces the noise in growth estimates,

it may become more difficult for the government to discover what works. In other words, the

informativeness of policy experiments may fall rather than rise. In this case, a push to improve

2A recent example that received global attention is the illicit sale of data from India’s Aadhaar ID project,

a database that covers almost the entire Indian population and includes biometric data. See, e.g., the reports

in the Guardian (Jan 4, 2018), the New York Times (Apr 3, 2018), and the Economist (Dec 18, 2018)
3See Business Daily (Apr 27, 2017) on Kenya. According to a recent Brookings Institution (May 30, 2018)

report on Africa, the government sector is among the top sectors impacted by confidentiality breaches.
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technical statistical capacity slows down the societal learning process.

To examine the relationship between technical statistical capacity and societal learning

about reforms, this paper proposes a theoretical two-period framework that features ex ante

fundamental uncertainty about the effects of alternative reform options (as in Binswanger and

Oechslin, 2015, 2019) and ex post measurement uncertainty in the economy’s key statistic, the

output estimate. Measurement uncertainty stems from the fact that the statistical office has to

base its output estimate on a random sample of firms. Within the framework, the size of this

firm sample can be interpreted as a measure of the economy’s technical statistical capacity.

An improvement in technical statistical capacity reduces measurement uncertainty and hence

improves the accuracy of output estimates. A further key element of the framework is that it

treats firms’ investment decisions as endogenous and allows for the possibility of firms being

subject to bribe demands by bureaucrats. Specifically, we assume that firms sampled by the

statistical office face a positive probability that they will be confronted with (additional) bribe

demands that amount to a fixed proportion of their current revenue.4

In this framework, what are the consequences of an exogenous improvement in technical

statistical capacity? Holding constant firms’ investments, a fall in measurement uncertainty

permits a more reliable assessment of whether an implemented reform boosts output or whether

the government should pursue adjustments to make the reform work; as a result, the learning

process speeds up. However, firms’ investments do not stay constant when technical statistical

capacity improves: a larger sample implies that each individual firm faces a higher probability of

being sampled and hence a higher risk of being confronted with bribe demands; as a result, firms

scale back their investments, a response that has direct negative consequences for economic

performance. But even more importantly, with smaller investments, economic reforms have

a smaller effect on output—which, in turn, makes it more difficult for the government to

determine whether an implemented reform works or needs adjustment.

So an improvement in technical statistical capacity has two opposing effects on the speed

of the societal learning process and hence economic performance. A key implication of our

framework is that—if control of corruption is sufficiently weak—there is a hump-shaped rela-

tionship between technical statistical capacity and economic performance: increasing the firm

sample helps initially but reduces expected output beyond some critical threshold. In other

words, although sampling is costless and the government interested in learning about reforms,

the optimal sample size is strictly smaller than the total number of firms. Corruption, by

4While the baseline setup is kept parsimonious, we present two obvious extensions in the appendix. One of

them allows for misreporting by firms, a potential issue when bribe demands are influenced by reported revenue.
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impairing the government’s ability to identify the consequences of its reform decisions, retards

economic growth by slowing down the learning process about what works.5

Over the past few years, a growing literature on the quality of economic statistics in de-

veloping countries has emerged. In many poor countries, the quality is low, implying a large

potential for improvements in the timeliness and precision of economic indicators (e.g., Devara-

jan, 2013; Jerven, 2013; Kiregyera, 2015; Sandefur and Glassman, 2015).6 A large number of

contributions emphasize the link between the quality of economic statistics and policy making.

Rodrik (2010), for instance, stresses the importance of high quality data for evidence-based

development policy. Manski (2015) worries that imprecise estimates may lead to bad policy de-

cisions if policy-makers fail to account for measurement error. Binswanger and Oechslin (2015)

argue that better statistics—by making evaluations of past policy changes more reliable—could

reduce disagreement and promote economic reforms. More in line with the present paper, Bin-

swanger and Oechslin (2019) identify adverse consequences of better statistics in electoral

democracies. Although the present paper also uses a model of active policy learning, it differs

significantly from the former. Here, we relate learning about policies to corruption and explic-

itly model firms’ investment choices in this context. Thereby, we connect with the literature

on corruption and firms, amongst others with firm-level studies documenting that corruption

constrains the growth aspirations and the advancement of firms (e.g., Fisman and Svensson,

2007; Estrin et al., 2013; Freund et al., 2016; Colonnelli and Prem, 2017).

The rest of this paper is organized as follows. The upcoming section presents motivating

evidence. In Section 3, we describe the theoretical setup. Section 4 solves for the equilibrium,

assuming a given level of technical statistical capacity. Section 5 derives the optimal capacity

level and discusses the harmful role of corruption. Section 6 concludes.

2 Motivating Evidence

In this section, we present motivating evidence on the relationship between the quality of

economic statistics and economic performance. Thereby, we also consider the moderating role

of corruption. To capture the quality of economic statistics, we use the World Bank’s Statistical

Capacity Index (SCI). The SCI is available for 153 developing and emerging economies at yearly

5There is a rich literature on economic policy channels through which corruption may affect growth. An

influential part of this literature focuses on channels emphasizing the impact of corruption on taxation and

public goods (see, e.g., Aghion et al., 2016). The policy learning channel has not been investigated so far.
6There is a related literature in macroeconomics, real-time data analysis, that documents properties of data

revisions and explores how such revision matter, e.g., for monetary policy analysis. See Croushore (2011).
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Figure 1: Statistical capacity and growth, full sample, 2005-2016
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Note: This figure shows a partial residual plot. The underlying linear OLS regression relates the average annual

growth rate of real GDP p.c. to a constant, the SCI, the log of real GDP p.c., and period fixed effects. The

value of the coefficient on the SCI (which is also the slope of the fitted line) is 3.913 (p-value: 0.000).

frequency. We have recoded the index so that it ranges from 0 to 1, where 1 indicates maximum

statistical capacity (the original range is 0 to 100). The index measures the extent to which a

country’s statistical system adheres to international technical standards deemed essential for

the quality of economic data. We use the growth rate of real GDP p.c. (PPP, constant 2011

I$) to capture economic performance and the World Bank’s Control of Corruption Index (CCI)

as a measure for (the absence of) corruption. The CCI is a corruption perception index that is

concerned with the exercise of public power for private gain. Again, we have recoded the index

so that it ranges from 0 to 1, where 1 indicates maximum control of corruption. Our dataset

includes 146 countries and covers the period from 2005 to 2016. In the figures below, we use

observations averaged over periods of three years (2005-07, 2008-10, 2011-2013, and 2014-16).
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Figure 2: Statistical capacity and growth, two subsamples, 2005-2016
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Note: This figure shows a partial residual plot for countries with an average CCI score belonging to the top (“low

corruption”) or bottom (“high corruption”) 25% of the distribution (145 observations each). The underlying

linear OLS regressions relate the average annual growth rate of real GDP p.c. to a constant, the SCI, the log

of real GDP p.c., and period fixed effects. The values of the coefficients on the SCI (which are also the slopes

of the fitted lines) are -0.015 (p-value: 0.994) for the high-corruption subsample and 6.527 (p-value: 0.000) for

the low-corruption subsample. The difference in the two coefficients is statistically significant at the 5% level.

The full sample includes 556 observations.7

Figure 1 shows a partial residual plot that illustrates the correlation between the residual

growth rate of real GDP p.c. and statistical capacity.8 We see a significant positive relationship:

an increase in the SCI of one standard deviation (0.16) is associated with a rise in real GDP p.c.

7The data were retrieved on July 4, 2018, from https://data.worldbank.org/. We dropped as outliers all

observations that belong to either the bottom or top 0.5% in the distribution of GDP p.c. growth rates.
8Besides SCI, the underlying OLS regression includes as explanatory variables the log of real GDP p.c. (to

control for convergence) and period fixed effects (to control for period-specific shocks common to all countries).
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Figure 3: Statistical capacity and nighttime light intensity, two subsamples, 2005-2013
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Note: This figure shows a partial residual plot for countries with an average CCI score belonging to the top (“low

corruption”) or bottom (“high corruption”) 25% of the distribution (101 and 102 observations, respectively).

The underlying linear OLS regressions relate the log difference of mean light intensity to a constant, the SCI,

the log of mean light intensity, and period fixed effects. The values of the coefficients on the SCI (which are also

the slopes of the fitted lines) are -0.015 (p-value: 0.771) for the high-corruption subsample and 0.046 (p-value:

0.215) for the low-corruption subsample.

growth of 0.6 percentage points. Given an interquartile range of real GDP p.c. growth of just

3.4 percentage points, this is a sizable correlation. Figure 1 is based on the full sample and does

not account for cross-country differences in corruption. The role of corruption is highlighted in

Figure 2. Again, the figure shows a partial residual plot, but it separately considers two disjunct

subsamples of the full sample. One of them contains all countries with an average CCI score

belonging to the top 25% of the distribution (“low corruption”) and the other one all countries

with an average CCI score belonging to the bottom quartile (“high corruption”). Figure 2
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suggests that the positive correlation that is apparent in Figure 1 is driven by observations

from low-corruption countries. While there is a significant positive relationship between the

growth rate of real GDP p.c. and statistical capacity in the low-corruption subsample, no such

relationship emerges among high-corruption countries.

The pattern documented in Figure 2 is fairly robust to a number of modifications. It remains

mostly unaffected when we use larger subsamples of low- and high-corruption countries.9 It is

also robust to the inclusion of country fixed effects in the underlying regressions (though the

p-value on the estimate of the coefficient on SCI in the low-corruption subsample rises from

virtually 0 to 0.15). Finally, given the concerns regarding GDP data quality emphasized in the

introduction, we were also using the (log) change in nighttime light intensity as a proxy for

economic performance (see Henderson et al., 2012). The source of the light data is Hodler and

Raschky (2014), who aggregated the georeferenced raw data to ADM2 administrative levels

(from where we aggregated it to the country level).10 The data are scaled from 0 to 63, where a

larger number reflects more intense nighttime lights. The data are available up to the year 2013

only, which leaves us with 399 observations from 134 countries. Overall, we find that the swap

of GDP for light data does not change the basic pattern documented in Figure 2: there tends

to be a positive relationship between economic performance and statistical capacity among

low-corruption countries, while no such relationship appears among high-corruption countries.

However, the differences between low- and high-corruption countries are smaller and more

sensitive to the threshold applied. In Figure 3, the threshold is 25%.

It is clear that one cannot draw any firm conclusions from the above results. However,

they do draw attention to the fact that the correlation between economic performance and

statistical capacity—while being positive overall—is not uniform but dependent on corruption.

The framework developed below offers an explanation for this pattern.

9The 25%-threshold (top/bottom) is chosen for visual clarity. The general conclusion stated at the end of

the preceding paragraph remains valid when we gradually move to larger thresholds, up to the median.
10The raw data come from the National Oceanic and Atmospheric Administration (NOAA) (2014). To

aggregate it, Hodler and Raschky (2014) use the GADM database of Global Administrative Areas (2012).
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3 The Model

3.1 Firm Output and Economic Policy

We consider a two-period economy that is populated by N > 0 firms that produce a uniform

final good. Total output by firm i ∈ {1, · · ·, N} in period t ∈ {1, 2} is given by

zit = yit + ζit, (1)

where yit and ζit refer to output produced using a “modern” and a “traditional” technology,

respectively. The simultaneous use of two technologies by the same firm may be the result of

firms producing in multiple locations with different degrees of suitability for the technologies.

The modern technology is represented by the production function

yit = y(At, xit) = Atx
α
it, (2)

where 0 < α < 1. At captures the level of productivity of the modern technology and xit

refers to a firm-specific investment whose per-unit cost is normalized to 1. Productivity is

affected by economic policy, Pt. Following Binswanger and Oechslin (2019), we assume that

Pt ∈ {−1, 0, 1}, where −1 and 1 denote two alternative “reform policies” and 0 reflects the

“status-quo policy”. The impact of policy on productivity is described by

At = 1 +
√
γPtS, (3)

where 0 < γ < 1 reflects the economic significance of the reform and S ∈ {−1, 1} captures

the unobserved and invariable “state of the world” that materializes prior to the start of the

economy. Equations (2) and (3) together imply that a reform policy is beneficial (harmful) if

its sign is the same as (is different from) the sign of the state. S takes each of its two possible

values with probability 1/2. This specific value is chosen for analytical convenience and not

important for our argument. What matters is that there is some uncertainty as to whether a

particular reform alternative has a positive or a negative effect on output.

The sole purpose of having a traditional technology is to generate idiosyncratic variation

in firm level output that is independent of policy.11 So the modeling is parsimonious: ζit is a

continuous i.i.d. random variable with support on [0,∞), mean χ > 0 and variance σ. For a

reason that will become clear below, we assume that the distribution of ζit has a light left tail.

11The idea is that the modern technology involves a high degree of specialization and hence crucially depends

on government policies (such as those related to contract enforcement), while the traditional technology is very

basic so that it can be operated without government services. See, e.g., Acemoglu et al. (2007).
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Moreover, to ensure the model’s scale invariance regarding N , we impose

σ = θN, (4)

where θ > 0. As will become clear below, the parameter θ governs the volatility of average

traditional technology output. Finally, in what follows, we use an asterisk (∗) to mark values

reflecting optimal firm choices. For instance, we use y∗it and z∗it = y∗it + ζit to denote firm i’s

optimal modern technology output and optimal total output, respectively.

3.2 Informational Constraints and Output Estimation

Each firm i observes z∗it but does not directly observe y∗it or ζit within the same period, reflecting

frictions in the gathering and/or processing of detailed information within firms. Because of

this, the implementation of a reform policy in period 1 does not put firms in a position that

would allow them to unambiguously infer state S within that very period. However, over time,

firms become able to separately observe y∗i1 and ζi1 and hence—given P1 6= 0—identify the

state. In particular, firm i learns (y∗i1, ζi1) just before it chooses its level of investment in period

2 (an assumption that simplifies our analysis without affecting its substance).

Prior to the possible identification of state S in period 2, all agents can turn to information

provided by the statistical office to update their belief about S: the statistical office is endowed

with the capacity to collect firm-level data on z∗it, which it uses to calculate and publish

estimates of average total firm output at the end of each period. The estimates are based on

a random sample of n ≤ N firms, where n is determined before the start of the economy. The

ratio p ≡ n/N is an obvious measure of technical statistical capacity in our simple economy.

The activities of the statistical office (data collection, processing, and publication) are costless.

The statistical office’s estimate of average total firm output for period t is given by

Zpt ≡
1

pN

pN∑
i=1

z∗it =

(
1

pN

pN∑
i=1

y∗it

)
+ ζpt , (5)

where

ζpt ≡
1

pN

pN∑
i=1

ζit. (6)

Assuming that pN is sufficiently large, the Lindeberg-Lévy CLT implies that the distribution

of
√
pN (ζpt − χ) is closely approximated by N(0, pN). Accordingly, we impose

ζpt ∼ N(χ, θ/p). (7)
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If P1 6= 0, the publication of Zpt at the end of period 1 allows all agents to compute the

ex-post probability that the implemented reform alternative is the beneficial one:

r(Zp1 ) ≡ Pr [P1 = S|Zp1 ] . (8)

To compute r(Zp1 ), all agents rely on Bayes’ rule.12

3.3 The Bureaucracy and the Government

Firm-level data collected by the statistical office may be misused: in both periods, there

is a probability π > 0 of a confidentiality breach that puts the data into the hands of a

“corrupt” government official who can extract bribes from those firms he has got information

on. Following Svensson (2003) and Fisman and Svensson (2007), we may think of an official

outside the statistical office whose power to collect bribes derives from his discretion in the

application and enforcement of complex regulations. To get hold of the confidential firm data,

the official may work with accessories inside the statistical office or may find a way to intrude

the office’s IT system. Yet the official’s power is limited: firms can fend off bribe demands by

incurring a cost amounting to a fraction 0 < β̂ < 1 of total firm output (but prefer paying the

bribe to fending the demands off if the costs are the same).13 So, provided that a confidentiality

breach occurs in period t, any given firm i sampled in that period will face bribe demands of

size β̂zit. We will refer to β ≡ πβ̂ as the bureaucracy’s vulnerability to corruption.

The government determines statistical capacity and is in charge of economic policy. We

consider a reform-minded government that has inherited a bureaucracy whose vulnerability to

corruption cannot be changed within the time horizon of the model and hence must be taken

as exogenous. The government’s objective is to maximize the expected lifetime total output

by the representative firm i. Formally, its objective function is given by

V = E1 {z∗i1 + z∗i2} , (9)

where the expectation in equation (9) is formed at the beginning of period 1. So our analysis

of optimal technical statistical capacity is carried out in a “favorable” setting in which the

government does not pursue any special interests but aims at maximizing aggregate output

and in which the operations of the statistical office are free of charge.

12There is a chance that the realization of ζi1 is so close to 0 so that y∗i1
∣∣
P1 6=S

+ ζi1 < y∗i1
∣∣
P1=S

, in which

case firm i—and the statistical office if i is sampled—can infer S in period 1 if P1 6= S. But since we assume

that the distribution of ζi1 has a light left tail, this chance is so small that it can be ignored in our analysis.
13Bai et al. (2019) argue that competition among sub-national jurisdictions to attract firms keeps bribe

extraction in check: if the bribe a corrupt official asks for is “too high”, the affected firm will move away.
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3.4 Time Line

The timing of actions is as follows. Prior to the start of the economy, Nature determines the

unobserved state of the world S and the government chooses statistical capacity p.

In the first period, the government sets P1; observing the government’s policy decision,

all firms choose xi1; the statistical office draws the random firm sample, thereby observing

the government’s choice of p; Nature determines {ζi1}Ni=1; the statistical office collects the

data and—if there is a confidentiality breach—the firms belonging to the sample are asked for

bribes; the statistical office publishes Zp1 and—if P1 6= 0—all actors compute r(Zp1 ).

In the second period, the government sets P2; all firms learn (y∗i1, ζi1) and—if P1 6= 0—infer

state S; taking P2 and the available information on the state into account, all firms choose xi2.

From this point onwards, the sequence of actions is identical to that in period 1.

3.5 Extensions

In the baseline setup proposed above, it is simply assumed that firms that are not part of the

statistical office’s sample in period t will not be asked for bribes in that period. Appendix B

presents an extension of the baseline setup in which such differential treatment of sampled and

non-sampled firms can be the result of optimizing behavior on the part of the official. The logic

is straightforward. When directed at sampled firms, the official is able to “bribe discriminate”

(Svensson, 2003), i.e., to adjust his demands such that they match each individual firm’s

maximum willingness to pay. However, when approaching non-sampled firms, the official has

to ask for a uniform bribe since firm output is private information. As a result, the expected

payoff from approaching a random non-sampled firm is small relative to that of approaching

a sampled firm. So, if approaching firms comes at an appropriate effort cost, it is optimal to

approach sampled firms but to leave non-sampled firms alone.

Another important assumption in the above baseline setup is that the statistical office is in

a position to accurately observe the output of those firms that are part of its random sample.

Appendix C presents a different extension of the baseline setup in which the statistical office

is in a weaker position: instead of observing output levels, the office has to work with output

data as reported by the firms. This poses a potential problem: sampled firms, anticipating that

they may be subject to proportional bribe demands, have an incentive to misreport. However,

any misreporting carries a fine—provided it is detected. We show that the key implications

of the baseline setup are robust to this modification. The logic is again straightforward.

The statistical office, understanding the firms’ incentives to misreport, can infer the actual
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output levels from the (mis-)reported ones. Put differently, when calculating its average output

estimate, the office applies an appropriate “correction” to the (mis-)reported data. As a result,

the average output estimate is as accurate as in the baseline setup.

4 Equilibrium Economic Policy

4.1 Input Choice

Before going backwards through the sequence of policy choices, we consider firms’ investment

decisions. In period t ∈ {1, 2}, firm i solves the maximization problem

max
{xit}

{
p
[
π(1− β̂)Eit {y(At, xit) + ζit}+ (1− π)Eit {y(At, xit) + ζit}

]
(10)

+ (1− p)Eit {y(At, xit) + ζit} − xit
}
,

where Eit{·} refers to the expectation formed by the firm just before it chooses xit. The

objective function in problem (10) reflects that, with probability p, firm i is sampled by the

statistical office, in which case it faces a chance of π of being confronted with bribe demands

that amount to a fraction β̂ of its output. Problem (10) can be algebraically simplified to

max
{xit}

{
(1− pβ)

(
Eit {At}xαit + χ

)
− xit

}
. (11)

Since 0 < α < 1, the objective function in maximization problem (11) is a strictly concave

function of xit ∈ [0,∞). The function’s maximizer is given by

x∗it =
[
α (1− pβ)Eit {At}

]1/(1−α)
, (12)

Using production function (2), we can calculate firm i’s optimal modern technology output as

y∗it = At
[
α (1− pβ)Eit {At}

]α/(1−α)
. (13)

4.2 Second Period

The final decisions of interest to be taken in period 2 are those by the firms on second-period

investment. When making their decisions, the firms have just learned about (y∗i1, ζi1). As a

result, if P1 6= 0, they can infer S ∈ {−1, 1} from (y∗i1, ζi1); moreover, having observed P2,

they can identify A2 with certainty (equation 3). Otherwise, if P1 = 0, firms still believe that

state S takes each of its possible values with probability 1/2; as a result, we can conclude that

Ei2 {A2} = 1 irrespective of the choice of P2. To summarize:

Ei2 {A2} =

 1 : P1 = 0

A2 : P1 6= 0
. (14)
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The first decision to be taken in period 2 is that by the government on second-period policy,

P2 ∈ {−1, 0, 1}. Objective function (9) implies that, at this point in time, the government

wants to maximize E2 {z∗i2}, where the expectation is formed at the beginning of period 2.

First assume that the status-quo policy has been implemented in period 1 (P1 = 0). For this

case, equation (14) implies Ei2 {A2} = 1. As a result, we obtain

E2 {z∗i2(P2)} = E2 {A2(P2)} [α (1− pβ)]
α/(1−α)

+ χ. (15)

Again, since the beliefs about state S cannot be updated in this case, we have E2 {A2(P2)} = 1

irrespective of the particular choice of P2. As a result, the government is indifferent between

the three policy options. Without loss of generality, we henceforth assume that the government

decides to keep the status-quo policy in place:

P2|P1=0 = 0. (16)

Now suppose that a reform policy has been implemented in period 1 (P1 6= 0). In this case,

taking into account equations (13) and (14), we obtain

E2 {z∗i2(P2)} = E2

{
[A2(P2)]

1/(1−α)
}

[α (1− pβ)]
α/(1−α)

+ χ. (17)

The expectation in equation (17) is now based on r(Zp1 ), the ex-post probability that the

first-period reform is beneficial. Therefore:

PROPOSITION 1 Suppose P1 6= 0. Then, in order to maximize E2 {z∗i2(P2)}, the govern-

ment chooses P2 according to

P2|P1 6=0 =

 P1 : r(Zn1 ) ≥ 1/2

−P1 : r(Zn1 ) < 1/2
. (18)

Proof. See Appendix A. �

4.3 First Period

If a reform policy has been implemented, the final activity in period 1 is the formation of the

posterior belief, r(Zp1 ) ≡ Pr [P1 = S|Zp1 ]. Since, from an ex-ante perspective, state S takes

each of its two possible values with probability 1/2, it follows that Ei1 {A1} = 1 irrespective of

the value of P1. As a result, equation (13) implies that the optimal modern-technology output

chosen by firm i in period 1 is given by

y∗i1 = A1 [α (1− pβ)]
α/(1−α)

. (19)
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Given this, and considering equations (5) and (7), Zp1 follows a normal distribution, the mean

of which being a function of state S and policy P1:

Zp1 ∼ N
{
A1 [α (1− pβ)]

α/(1−α)
+ χ, θ/p

}
, (20)

where A1 = 1+
√
γ if P1 = S and A1 = 1−√γ if P1 = −S. Since each of these two possibilities

materializes with probability 1/2, Bayes’ rule implies

r(Zp1 ) ≡ (1/2) · f (Zp1 |P1 = S)

(1/2) · f (Zp1 |P1 = S) + (1/2) · f (Zp1 |P1 = −S)
, (21)

where f (Zp1 | ·) denotes the corresponding normal density. Using functional forms, we obtain

r(Zp1 ) =

{
1 + exp

[
2
γ

σ/n

(
Ẑp1 − χ

)(
Ẑp1 − Z

p
1

)]}−1
, (22)

where

Ẑp1 = [α (1− pβ)]
α/(1−α)

+ χ. (23)

According to equation (22), r(Zp1 ) is a strictly increasing function of Zp1 , rising from 0 (if

Zp1 −→ −∞) to 1/2 (if Zpn1 = Ẑp1 ) to 1 (if Zp1 −→∞). In combination with Proposition 1, this

implies that P2 = P1 if Zp1 ≥ Ẑ
p
1 and P2 = −P1 otherwise.

Moving backwards to the firms’ decision, we note that x∗i1 and y∗i1 are given by equations

(12) and (13), respectively, with Ei1 {A1} = 1 irrespective of the value of P1.

The first decision to be taken in period 1 is that by the government on first-period policy.

To inform this decision, the government compares the value of its objective function, V =

E1 {z∗i1 + z∗i2}, under the status quo to the value under any of the two reform alternatives.

According to equation (16), P1 = 0 implies P2 = 0. As a result, if the government opts for

the status quo in period 1 (P1 = 0), we obtain A1 = A2 = 1. From this, it follows that the

expected lifetime total output by the representative firm i is given by

E1 {z∗i1 + z∗i2|P1 = 0} = 2 [α (1− pβ)]
α/(1−α)

+ 2χ. (24)

Because of the symmetric setup, the government is indifferent between the reform alterna-

tives −1 and 1. Without loss of generality, we henceforth assume that P1 = 1 if the government

decides to abandon the status quo. In this case, P2 is determined by equation (18) and the

expected lifetime total output by the representative firm i is given by

E1 {z∗i1 + z∗i2|P1 = 1} =
[
1 + E1

{
[A2(P2)]

1/(1−α)
}]

[α (1− pβ)]
α/(1−α)

+ 2χ. (25)

Moreover:
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LEMMA 1 Suppose the government opts for a reform policy in period 1 (e.g., P1 = 1). Then,

E1

{
[A2(P2)]

1/(1−α)
}

= Âl + Pr[P2 = S]
(
Âh − Âl

)
> 1, (26)

where Pr[P2 = S] denotes the probability that the government will choose the beneficial reform

policy in period 2 and

Âl ≡ (1−√γ)1/(1−α) and Âh ≡ (1 +
√
γ)1/(1−α). (27)

Proof. See Appendix A. �

The results established so far lead to the following conclusion:

PROPOSITION 2 In period 1, the government prefers reform (e.g., P1 = 1 ) to the status

quo. In period 2, the government’s policy choice is described by equation (18).

Proof. The first statement of the proposition follows from equations (24) and (25) and

Lemma 1. The second statement follows from the first and Proposition 1. �

In period 1, there are two factors that make the government prefer a reform policy to the

status-quo. First, if a reform policy is implemented, the government gains information about

“what works”; this, in turn, allows for a better-informed policy decision in period 2. Second,

output produced using the modern technology is convex in A2; as a result, taking a “symmetric

risk” is preferred to obtaining the expected value with certainty.

5 Statistical Capacity

5.1 Optimal Statistical Capacity

Besides economic policy, the government determines technical statistical capacity, p, with a

view to maximizing the expected lifetime total output by the representative firm i. According

to equations (25) and (26), an important magnitude in the government’s optimization problem

is the probability with which it will implement the beneficial reform policy in period 2.

PROPOSITION 3 At the beginning of period 1, i.e., at the moment when the government

decides to implement a reform policy (Proposition 2), the probability that the implemented

second-period reform is in fact the beneficial one, Pr[P2 = S], is given by

I(C; γ, θ) ≡ Φ
(√

γ/θ · C(p;α, β)
)

(28)

where Φ (·) denotes the distribution function of the standard normal distribution and

C(p;α, β) ≡ √p [α (1− pβ)]
α/(1−α)

> 0. (29)
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Proof. See Appendix A. �

In what follows, we will call I the “informativeness of policy experimentation”.14 As can be

seen from equation (28), informativeness depends on the one hand on variables unrelated to the

statistical office: other things equal, if a reform is more significant (higher γ), or if aggregate

traditional technology output is less volatile (lower θ), informativeness is higher. On the other

hand, informativeness is influenced by the statistical office. In equation (28), C(p;α, β) captures

the entirety of channels by which the statistical office affects informativeness. For this reason,

we will call C(p;α, β) a measure of “comprehensive statistical capacity”. It is immediately

apparent that the effect of technical statistical capacity on comprehensive statistical capacity is

ambiguous if the bureaucracy’s vulnerability to corruption is not identical to zero (β > 0). This

reflects that firms—observing a positive relationship between p and expected bribe demands—

reduce investment in response to a rise in technical statistical capacity (equation 12). The

parameter α enters C(p;α, β) because it governs the elasticity of investment with respect to

expected bribe demands. C(p;α, β) has the following important properties:

LEMMA 2 Comprehensive statistical capacity C(p;α, β) is a function of p on [0, 1] that has

a unique maximizer, p∗ ∈ (0, 1]. Moreover, C(p;α, β) is strictly concave on [0, p∗).

Proof. See Appendix A. �

What level of technical statistical capacity maximizes comprehensive statistical capacity?

The answer depends to a large degree on the bureaucracy’s vulnerability to corruption:

PROPOSITION 4 If the bureaucracy is sufficiently vulnerable to corruption, the level of

technical statistical capacity that maximizes comprehensive statistical capacity C(p;α, β)—and

hence informativeness I(C; γ, θ)—is strictly less than 1. In formal terms: if

β >
1− α
1 + α

, (R1)

we obtain

p∗ =
1− α
1 + α

1

β
< 1, (30)

where we use p∗ to denote the maximizer of C(p;α, β).

Proof. See Appendix A. �

14The complementary probability of P2 = S is equal to the sum of the probabilities of a type-I error (P1 = S

is rejected although true) and of a type-II error (P1 = S is not rejected although false).
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A rise in technical statistical capacity has opposing effects on comprehensive statistical ca-

pacity and hence on the extent to which the estimate of average firm output, Zp1 , is informative

for the choice of policy in period 2. On the positive side, a rise in technical statistical capacity

reduces the variance of the exogenous component of Zp1 (equation 7); other things equal, this

helps informativeness. On the negative side, for any individual firm, a rise in technical statisti-

cal capacity implies a higher chance of being confronted with bribe demands. As a result, firms

respond by reducing investment (equation 12)—which dampens the impact of reforms on firm

output. Other things equal, this harms informativeness. The strength of the negative effect

rises in the bureaucracy’s vulnerability to corruption. If β is sufficiently large, the negative

effect starts to dominate at a strictly interior level of statistical capacity.

However, comprehensive statistical capacity—and the associated probability of choosing the

beneficial reform policy in period 2—is not the only variable the government has to consider

when determining the level of p that maximizes V , the expected lifetime total output by

the representative firm. The negative static effect of technical statistical capacity on firm

investment (and hence firm output) must be accounted for, too. Therefore:

PROPOSITION 5 Suppose that the bureaucracy is sufficiently vulnerable to corruption so

that condition (R1) holds. Then, the equilibrium level of technical statistical capacity (i.e., the

level that maximizes lifetime total output of the representative firm, V ) is strictly less than the

level that maximizes comprehensive statistical capacity C(p;α, β). In formal terms:

p∗∗ < p∗ =
1− α
1 + α

1

β
< 1, (31)

where we use p∗∗ to denote equilibrium technical statistical capacity.

Proof. See Appendix A. �

Figure 4 illustrates how I(C; γ, θ) and V = E1 {z∗i1 + z∗i2} depend on technical statistical

capacity, assuming that condition (R1) holds. Both curves in the figure are hump-shaped.

Proposition 5 predicts that V peaks at a strictly lower level of technical statistical capacity

than C does. As a result, the peak of I must lie to the right of the peak of V .

In Figure 4, p∗∗ takes a particularly low value. So equilibrium technical statistical capacity

is weak, as is technical statistical capacity in many developing countries. The figure thus

conveys the message that real-world instances of low technical statistical capacity should be

interpreted with care. In addition to, or instead of, reflecting neglect or a lack of resources and

expertise, keeping technical statistical capacity at a low level may be the best response by a

government that is confronted with an intractably adverse institutional setting.
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Figure 4: Technical statistical capacity, informativeness, and economic performance
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For the simulation we have chosen the following parameter values: α = 0.7, β = 0.3, γ = 0.5.

5.2 The Effect of Corruption

An increase in the bureaucracy’s vulnerability to corruption strengthens the negative effect of

statistical capacity on firm investment. As a result, the level of technical statistical capacity

that maximizes comprehensive statistical capacity and informativeness, p∗, is a decreasing

function of β (equation 30). Simulations suggest that a similar result holds for the level of

statistical capacity that maximizes lifetime total output by the representative firm, p∗∗. Figure

4 illustrates that p∗∗ shifts to the left as β increases. Consistent with this, we find that a rise

in β has a negative effect on the two outcomes of interest:

PROPOSITION 6 Suppose that the bureaucracy is sufficiently vulnerable to corruption so

that condition (R1) holds. Then, (i) C(p;α, β)—and thus I(C; γ, θ)—are strictly decreasing

functions of β; (ii) V = E1 {z∗i1 + z∗i2} is a strictly decreasing function of β.

Proof. See Appendix A. �
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Figure 5: Effect of vulnerability to corruption on economic performance
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For the simulation we have chosen the following parameter values: α = 0.7, γ = 0.5.

There is a large literature on the channels by which corruption affects economic perfor-

mance. Proposition 6 puts the spotlight on a novel one. An increase in the bureaucracy’s

vulnerability to corruption reduces the informativeness of policy experiments (involving the

implementation, evaluation, and adjustment of reforms) and hence slows down the learning

process about “what works”. This is reflected in the economy’s growth rate:

PROPOSITION 7 Suppose that the bureaucracy is sufficiently vulnerable to corruption so

that condition (R1) holds. Then, the expected growth rate of modern-technology output,

E1

{
y∗i2 − y∗i1
y∗i1

}
=

1

1− γ

{
Âl + I(C; γ, θ)

(
Âh − Âl

)}
− 1, (32)

is a strictly decreasing function of β.

Proof. Follows immediately from Proposition 6. �

So the consequences of an increase in corruption are not limited to a mere level effect;

higher corruption also flattens the path of modern-technology output over time.
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6 Summary and Conclusion

One approach to boost economic output is policy experimentation: tweak an existing economic

policy, evaluate the consequences, and so discover “what works”. While economists have been

interested in this approach for a long time, it has recently gained traction in the context of

development policy. Clearly, how much policy makers can learn from a policy experiment—i.e.,

the degree of the experiment’s informativeness—must depend on the accuracy with which the

economy is measured. In developing countries, accuracy tends to be low. As a result, efforts to

help developing countries improve their statistical capacities are of great importance. In this

paper, we demonstrate that efforts with a sole focus on technical aspects—here understood

as the scale of data gathering—need not be unambiguously helpful. The reason is a type

of “observer effect”: raising technical statistical capacity to improve the measurement of the

economy changes what is being measured. Why? If confidentiality breaches are possible and

control of corruption is weak, more extensive information gathering by the statistical office

means that firms face a higher risk of being confronted with bribe demands. As a result,

firms reduce their investments, thereby dampening the effect of policy changes. The relative

strength of this harmful effect rises in the level of technical statistical capacity. At some point,

it becomes the dominant force, implying that further improvements in technical statistical

capacity make it harder—rather than easier—to discover “what works”.

Against this background, we argue that efforts with the aim of expanding data gathering

in developing countries should not be uniform but adapted to local circumstances. Broadly

speaking, the model suggests that such efforts be aligned with the quality of local institutions:

in countries where control of corruption is weak and data confidentiality in doubt, the extent of

data gathering—and hence the precision with which the economy is measured—should be more

limited. We further argue that attempts to address insufficient statistical capacity would benefit

from a comprehensive perspective that includes institutional aspects. The model suggests that

taking measures to strengthen data confidentiality would dampen the observer effect and so

permit the analysis of a less distorted economy, including the economy’s response to policy

changes. Such measures could range from fortifying the statistical office’s independence from

the bureaucracy to outright outsourcing of its tasks to an international body. More generally,

we believe that this paper may contribute to a better understanding of the intricate ways

through which corruption retards economic growth. By stifling private economic activity, and

by limiting the optimal degree of measurement precision, corruption makes it harder for policy

makers to discover how to tailor economic policies to local circumstances.

22



References
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Appendix A: Proofs

Propositions

Proof of Proposition 1. Obviously, the maximizer of E2{[A2(P2)]
1/(1−α)} maximizes the

expected second-period total output by the representative firm, E2 {z∗i2(P2)} . Together, equa-

tion (3) and the definition of r(Zn1 ), stated in equation (8), imply

E2

{
[A2(P2)]

1
1−α
}

=


r(Zn1 )(1 +

√
γ)

1
1−α + [1− r(Zn1 )] (1−√γ)

1
1−α : P2 = P1

1 : P2 = 0

r(Zn1 )(1−√γ)
1

1−α + [1− r(Zn1 )] (1 +
√
γ)

1
1−α : P2 = −P1

. (33)

Note that E2{[A2(P1)]
1/(1−α)} ≥ E2{[A2(−P1)]

1/(1−α)} if and only if r(Zn1 ) ≥ 1/2. Moreover,

because [A2]
1/(1−α)

is a strictly convex function of A2, we have E2{[A2(P1)]
1/(1−α)} > 1 if

r(Zn1 ) ≥ 1/2 and E2{[A2(−P1)]
1/(1−α)} > 1 if r(Zn1 ) ≤ 1/2. As a result, the government will

set P2 = P1 if r(Zn1 ) ≥ 1/2 and P2 = −P1 if r(Zn1 ) < 1/2. �

Proof of Proposition 3. The probability that the beneficial reform policy is implemented

in period 2 is composed of the probability that r(Zp1 ) ≥ 1/2 if P1 = S and the probability that

r(Zp1 ) < 1/2 if P1 = −S. Equation (22) implies (i) that r(Zp1 ) ≥ 1/2 is equivalent to Zp1 ≥ Ẑ
p
1 ;

and (ii) that r(Zp1 ) < 1/2 is equivalent to Zp1 < Ẑp1 . Thus,

Pr[P2 = S] = (1/2) Pr
[
Zp1 ≥ Ẑ

p
1

∣∣∣P1 = S
]

+ (1/2) Pr
[
Zp1 < Ẑp1

∣∣∣P1 = −S
]

(34)

= (1/2)
{

1− Pr
[
Zp1 < Ẑp1

∣∣∣P1 = S
]

+ Pr
[
Zp1 < Ẑp1

∣∣∣P1 = −S
]}

Taking into account equations (3), (5), and (19), equation (34) can be rewritten as

Pr[P2 = S] = (1/2)
{

1− Pr
[
(1 +

√
γ) [α (1− pβ)]

α/(1−α)
+ ζp1 < Ẑp1

]}
(35)

+ (1/2) Pr
[
(1−√γ) [α (1− pβ)]

α/(1−α)
+ ζp1 < Ẑp1

]
,

where Ẑp1 is given by equation (23). Rearranging terms yields

Pr[P2 = S] = (1/2)
{

1− Pr
[√

p/θ (ζp1 − χ) < −
√
γ/θ · C

]}
(36)

+ (1/2) Pr
[√

p/θ (ζp1 − χ) <
√
γ/θ · C

]
,

Since
√
p/θ (ζp1 − χ) follows a standard normal distribution, equation (36) is equivalent to

Pr[P2 = S] = (1/2)
[
1− Φ(−

√
γ/θ · C) + Φ(

√
γ/θ · C)

]
(37)

Because the standard normal distribution is symmetric around zero, equation (37) simplifies

to the expression given in the proposition. �
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Proof of Proposition 4. As Φ
(√

γ/θ · C
)

is a strictly increasing function of C(p;α, β),

the maximizer of C, p∗, is also the maximizer of I = Pr[P2 = S]. From equation (49), it follows

that ∂C(1;α, β)/∂p < 0 if condition (R1) is satisfied. Thus, according to Lemma 2, the unique

maximizer p∗ is strictly less than 1 and hence must be pinned down by the first-order condition

∂C(p∗;α, β)/∂p = 0. Equation (49) suggests that this condition is equivalent to

1

2

(1− p∗β)√
p∗

− α

1− α
β

N

√
p∗ = 0. (38)

Rearranging terms yields the expression stated in the proposition. �

Proof of Proposition 5. As the government opts for a reform policy in period 1 (P1 = 1),

V (p; ·) is given by equation (25). Therefore,

∂V

∂p
= φ

(√
γ/θ · C

) ∂C
∂p

√
γ

θ

(
Âh − Âl

)
[α (1− pβ)]

α/(1−α)
(39)

− αβ
α

1− α

1 + E1

{
A

1/(1−α)
2

}
[α (1− pβ)]

(1−2α)/(1−α)

or, equivalently, by

∂V

∂p
= [α (1− pβ)]

(2α−1)/(1−α)
(40)

·
{
φ
(√

γ/θ · C
) ∂C
∂p

√
γ

θ

(
Âh − Âl

)
[α (1− pβ)]− αβ α

1− α

[
1 + E1

{
A

1/(1−α)
2

}]}
.

First suppose that α ≤ 1/2 and consider equation (39). As p rises from 0 to the maximizer

of C(p;α, β), p∗, the first line of equation (39) decreases monotonically from infinity to 0 (see

the properties of C(p;α, β) stated in Lemma 2); for values of p ∈ (p∗, 1], the first line is strictly

negative. The second line of equation (39) increases monotonically (in absolute terms) as p

rises from 0 to p∗ (see equation 26 and Proposition 3), and remains strictly negative when p

exceeds p∗ (and rises towards 1). Together, the behavior of the first and the second line implies

that ∂V/∂p—as p rises from 0 to p∗—falls monotonically from infinity to a value that is strictly

less than 0; for values of p ∈ (p∗, 1], ∂V/∂p remains strictly negative. As a result, on [0, 1],

there exists a unique p∗∗ < p∗ such that ∂V (p∗∗; ·)/∂p = 0. From this, it immediately follows

that p∗∗ is the unique maximizer of V. Now suppose α > 1/2 and consider equation (40). A

similar chain of arguments implies that, again, on [0, 1], there exists a unique p∗∗ < p∗ such

that ∂V (p∗∗; ·)/∂p = 0. As in the case α ≤ 1/2, p∗∗ is the unique maximizer of V . �

Proof of Proposition 6. To prove (i), first assume that dp∗∗/dβ > 0. In this case, we

consider ∂V/∂p|p=p∗∗ = 0, the first-order condition that implicitly pins down p∗∗. Using
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equations (39) and (49), and rearranging terms, we obtain

Âh − Âl

2

φ
(√

γ/θ · C
)√

γ/θ · C

1 + E1{A1/(1−α)
2 }

(
1

p∗∗
− 1 + α

1− α
β

)
=

α

1− α
β. (41)

Expressions for C and E1{A1/(1−α)
2 } are given by equations (29) and (26), respectively. Taking

these into account, we can transform equation (41) into

U(C)
Âh − Âl

2

√
γ

θ
[α (1− p∗∗β)]

α/(1−α)
(

1√
p∗∗
− 1 + α

1− α
β
√
p∗∗
)

=
α

1− α
β, (42)

where

U(C) =
φ
(√

γ/θ · C
)

1 + Âl + Φ
(√

γ/θ · C
)(

Âh − Âl
) . (43)

Now consider the impact of a rise in β on equation (42), holding constant C. Obviously, the

right-hand side of the equation increases; at the same time, since we assume dp∗∗/dβ > 0,

the left-hand side decreases. As a result, U(C) must rise. Since C > 0 and Φ and φ denote,

respectively, the distribution function and the probability density function of the standard

normal distribution, it follows that C must fall to restore the equality of the two sides of

equation (42). So, if dp∗∗/dβ > 0, we must conclude that C(p∗∗;α, β) is a strictly decreasing

function of β. Now suppose that dp∗∗/dβ ≤ 0 and consider

dC(p∗∗;α, β)

dβ
=
∂C(p;α, β)

∂p

∣∣∣∣
p=p∗∗

dp∗∗

dβ
+
∂C(p;α, β)

∂β

∣∣∣∣
p=p∗∗

. (44)

Observing equation (29), we can infer that ∂C(p;α, β)/∂β|n=n∗∗ < 0. Because p∗∗ < p∗, and

since C(p;α, β) is a strictly increasing function of p on [0, p∗], we have ∂C(p;α, β)/∂p|p=p∗∗ > 0.

Finally, because dp∗∗/dβ ≤ 0 by assumption, it follows that dC(p∗∗;α, β)/dβ < 0. So, once

again, we must conclude that C(p∗∗;α, β) is a strictly decreasing function of β.

To prove (ii), note that equations (25) and (26) and Proposition 3 imply that in equilibrium

V =
[
1 + Âl + Φ

(√
γ/θ · C(p∗∗;α, β)

)(
Âh − Âl

)]
[α(1− p∗∗β)]

α/(1−α)
+ 2χ. (45)

Obviously, ∂V/∂p|p=p∗∗ = 0. Therefore,

dV

dβ

∣∣∣∣
p=p∗∗

= φ
(√

γ/θ · C
)√

γ/θ
∂C

∂β

(
Âh − Âl

)
[α(1− p∗∗β)]

α/(1−α)
(46)

−
[
1 + Âl + Φ

(√
γ/θ · C

)(
Âh − Âl

)] α

1− α
[α(1− p∗∗β)]

α/(1−α)−1
αp∗∗.

Considering the definition of C given in equation (29), it follows immediately that ∂C/∂β < 0.

Given this, we conclude that dV/dβ|p=p∗∗ < 0. �
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Lemmas

Proof of Lemma 1. In period 2, the government will either keep the first-period reform

policy in place or switch to the alternative reform policy (equation 18). Given the definition

of A2 in equation (3), and that of Pr[P2 = S] in the lemma, the agents expect A2 = 1 +
√
γ

with probability Pr[P2 = S] and A2 = 1−√γ with probability 1− Pr[P2 = S]. Thus,

E1

{
[A2(P2)]

1/(1−α)
}

= Pr[P2 = S](1 +
√
γ)1/(1−α) + {1− Pr[P2 = S]} (1−√γ)1/(1−α), (47)

an expression that can be rearranged to give the expression in the lemma.

To see that E1{[A2(P2)]
1/(1−α)} > 1, note (i) that [A2]

1/(1−α)
is a strictly convex function

of A2, implying that (1/2)(1+
√
γ)1/(1−α) +(1/2)(1−√γ)1/(1−α) > 1; and (ii) that Pr[P2 = S]

is strictly greater than 1/2 since the observation of Zp1 permits learning. �

Proof of Lemma 2. The partial derivative of C with respect to p is given by

∂C

∂p
=

√
γ

θ

[
1

2

[α (1− pβ)]
α/(1−α)

√
p

− αβ α

1− α

√
p

[α (1− pβ)]
(1−2α)/(1−α)

]
(48)

or, equivalently, by

∂C

∂p
= αα/(1−α) (1− pβ)

(2α−1)/(1−α)
√
γ

θ

[
1

2

1− pβ
√
p
− α

1− α
β
√
p

]
. (49)

First suppose that α ≤ 1/2. Then, equation (48) implies that limp→0 ∂C/∂p =∞ and that

∂C/∂p is a strictly decreasing function of p on [0, 1]. We thus conclude that C is strictly concave

on [0, 1] and has a unique maximizer, p∗, that is strictly greater than 0. Now suppose α > 1/2.

Then, equation (49) implies that limp→0 ∂C/∂p =∞ and that—as p increases from 0—∂C/∂p

is a strictly decreasing function of p as long as ∂C/∂p ≥ 0. Equation (49) further suggests that

∂C/∂p can have at most one root on [0, 1]. Thus, again, C has a unique maximizer p∗ > 0;

moreover, it is strictly concave on [0, p∗]. �

Appendix B: Endogenous Bribe Demands

Assumptions and approach. In the baseline model, we maintain the assumption that

firms belonging to the random sample may be subject to bribe demands, while firms outside

the sample are left alone for sure. A simple extension of the baseline model allows us to

obtain this pattern as an endogenous equilibrium outcome. To simplify matters, suppose that

confidentiality is never adhered to: π = 1, so that β = πβ̂ = β̂. Now assume that, immediately

after the statistical office has drawn the random sample, the corrupt official (i) learns the
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identity of the firms in the sample; (ii) must decide which firms, if any, to approach for initiation

of the bribe extraction process; (iii) incurs a cost ψ > 0 for each firm approached. After the

statistical office has collected the data, the corrupt official can present the firms for which

the extraction process has been initiated with bribe demands; when presenting the demands,

thanks to the confidentiality breach, the corrupt official knows the output of those firms that

belong to the sample, but lacks this knowledge for firms that are not in the sample. In what

follows, we demonstrate that the equilibrium characterized in the main text is consistent with

the official exclusively approaching sampled firms if the cost of approaching firms, ψ, takes an

appropriate value.

Notation and preliminaries. To show that the differential treatment of sampled and non-

sampled firms can be an equilibrium outcome, we introduce additional notation. F and f will

stand for the distribution function and probability density function of ζkt, respectively. We

denote by Rt the set of firms sampled in period t and by dkt the bribe demand presented to

firm k in period t. We use e(dkt) to denote the bribe received by the corrupt official from firm

k if the firm has been presented with a demand of size dkt. Taking into account that firm k

can fend off bribe demands at a cost of β̂zkt (see Subsection 3.3), we obtain

e(dkt) = dkt · 1[dkt ≤ β̂zkt], (50)

where 1[dkt ≤ β̂zkt] is a dummy variable that takes a value of 1 if the condition in brackets

is satisfied (and a value of 0 otherwise). Taking into account equations (1) and (13), and the

fact that y∗kt depends on whether Pt = S or Pt 6= S, we obtain

e(dkt|Pt 6= S) = dkt · 1
[
dkt/β̂ − y∗kt|Pt 6=S ≤ ζkt

]
(51)

and

e(dkt|Pt = S) = dkt · 1
[
dkt/β̂ − y∗kt|Pt=S ≤ ζkt

]
, (52)

where we will work with the definitions ζh
t
(dkt) ≡ dkt/β̂ − y∗kt|Pt 6=S and ζl

t
(dkt) ≡ dkt/β̂ −

y∗kt|Pt=S in what follows. We use the superscripts “h”and “l” to indicate that the threshold

is at a high level if Pt 6= S (because of low modern-technology output) and at a low level if

Pt = S (because of high modern-technology output). Relying on this notation, we now can

express the expected bribe payment by firm k as a function of the bribe demand:

Ecot {e(dkt)} = (1−Qt)Ecot {e(dkt)|Pt 6= S}+QtE
co
t {e(dkt)|Pt = S} , (53)

where Ecot {·} refers to the expectation formed in period t at the moment the corrupt official

(hence the superscript “co”) must decide whether or not to approach firm k for initiation of
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the bribe extraction process and Qt denotes the corresponding probability that Pt = S. Note

that Q1 = 1/2, while Q2 is either equal to r(Zp1 ) if this magnitude is at least 1/2 or equal to

1−r(Zp1 ) otherwise (in the latter case, the government switches to the alternative reform policy

in period 2). Importantly, this implies that Q2 ∈ [1/2, 1). Finally, making use of equations

(51) and (52), equation (53) can be rewritten as

Ecot {e(dkt)} = (1−Qt)
∫ ∞
0

dkt1
[
ζh
t
(dkt) ≤ ζkt

]
f(ζkt)dζkt (54)

+ Qt

∫ ∞
0

dkt1
[
ζl
t
(dkt) ≤ ζkt

]
f(ζkt)dζkt.

From equation (54), one can infer that—in expectations—the bribe extracted from a random

firm i ∈ Rt is strictly greater than the bribe that could be extracted from a random firm

j /∈ Rt. In the case of firm i, the corrupt official observes total firm output and hence can

always adjust dit such that—given the realization of ζit and the relationship between Pt and

S—the maximum bribe is extracted. In the case of firm j, output is not observed, implying

that the official has to ask for a uniform bribe. However, doing so means that—given the

realization of ζjt and the relationship between Pt and S—the bribe received is either 0 or

strictly less than the maximum possible.15 So, for firm j, the integrals in equation (54) take a

strictly lower value than do the corresponding integrals for firm i.

Minimum expected bribe: random firm i ∈ Rt. To find a condition that ensures that

the corrupt official will always find it optimal to approach firms belonging to the statistical

office’s random sample, we have to derive the minimum value of Ecot {e(dit)}, where dit = β̂zit

since i ∈ Rt. The minimum of Ecot {e(dit)} must arise in period 1 because Q1 = 1/2, which is

the lowest possible value probability Qt can take (see the discussion above). Using di1 = β̂zi1

and Q1 = 1/2 in equation (54), we obtain

Eco1

{
e(β̂zi1)

}
=

1

2

∫ ∞
0

β̂
(
y∗i1|P1 6=S + ζit

)
f(ζi1)ζi1 (55)

+
1

2

∫ ∞
0

β̂
(
y∗i1|P1=S

+ ζi1
)
f(ζi1)ζi1,

where y∗i1|P1 6=S can be found by combining equations (3) and (19). Simplifying yields

Eco1

{
e(β̂zi1)

}
= β̂

{
[α (1− p∗∗β)]

α/(1−α)
+ χ

}
. (56)

If the expression in equation (56) is greater than ψ, the corrupt official will always find it

optimal to approach all firms i ∈ Rt in order to ask them for bribes.

15Of course, the realization of ζjt may be such that it exactly hits the relevant threshold. However, since ζjt

has a continuous distribution, the chance that it takes this particular threshold is 0.
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Maximum expected bribe: random firm j /∈ Rt. When the corrupt official considers

approaching a random firm j /∈ Rt, he knows that he will not be in a position to adjust his

bribe demand to the firm’s output level. Instead, if he approached the firm, he would ask

for a uniform bribe that corresponds to the maximizer of equation (54). In what follows, we

denote this maximizer by d̄jt. To find a condition that ensures that the corrupt official will

never find it optimal to approach firms outside the statistical office’s random sample, we have

to find the highest value that Ecot
{
e(d̄jt)

}
can attain. The highest value arises when Qt—the

probability that Pt = S—equals 1. Obviously, this can only happen in period 2. Taking all

these considerations into account, it follows from equation (54) that

Eco2
{
e(d̄j2)

}
= d̄j2

[
1− F

(
ζl
2
(d̄j2)

)]
(57)

is the highest bribe payment the corrupt official could expect if he approached an arbitrary

non-sampled firm. Using the definition of ζl
t
(djt), and the explicit expression for y∗j2

∣∣
P2=S

inferable from Subsection 4.2, equation (57) can be turned into

Eco2
{
e(d̄j2)

}
= β̂

{
(1 +

√
γ)

1/(1−α)
[α (1− p∗∗β)]

α/(1−α)
+ ζl

2
(d̄j2)

}
(58)

·
[
1− F

(
ζl
2
(d̄j2)

)]
.

If the expression given in equation (58) is strictly less than ψ, the corrupt official will never

find it optimal to approach a firm j /∈ Rt in order to ask for bribes.

Differential treatment of sampled and non-sampled firms. The discussion in the pre-

vious two paragraphs immediately implies that, if the condition

Eco1

{
e(β̂zi1)

}
> ψ > Eco2

{
e(d̄j2)

}
(59)

holds, it is optimal for the corrupt official to approach all firms i ∈ Rt but to leave alone all

firms j /∈ Rt in period t ∈ {1, 2}. The above ranking of expectations is guaranteed provided

that χ is sufficiently large, an assumption we can make without further ado since χ does not

affect any of the endogenous variables. Given this, it follows that for “intermediate” values of

ψ the corrupt official behaves exactly as is assumed in the baseline setup.

Appendix C: Misreporting

Assumptions. In the model, we maintain the assumption that sampled firms have no choice

but to report output truthfully. In what follows, we demonstrate that the model can be
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extended to allow for output misreporting without undermining its key implications. As in

Appendix B, for simplicity, we assume that confidentiality is never adhered to (i.e., π = 1).

Moreover, we again use Rt to denote the set of firms sampled in period t.

Now assume that, (i) at the time the statistical office draws its random sample, the corrupt

official commits to a “two-part bribe tariff” that will be applied to sampled firms: dkt =

d0t + d1t z
r
kt, where (d0t , d

1
t ) is chosen by the official and zrkt refers to output as reported by firm

k ∈ Rt; (ii) once the ζits are determined, each sampled firm simultaneously decides on zrkt and

on whether to accept or fend off the bribe demand, considering that with probability πd > 0

misreporting carries a fine of (zkt − zrkt)
2

and that fending the demand off comes at a cost of

β̂zkt (as in the baseline setup). Assume further that (iii) the corrupt official is anxious to avoid

that even only a single bribe demand is fended off (as this might draw unwelcome attention to

the official’s machinations, something the official wants to avoid at all costs); in formal terms,

suppose that, for the official, a bribe demand that is fended off carries an infinitively large cost.

Assumption (iii) is not necessary in the baseline setup, but it is perfectly compatible with it.

Finally, assume that (iv) the statistical office understands (i) to (iii).

Equilibrium (mis-)reporting. When determining zrkt and its response to the bribe de-

mand, firm k ∈ Rt minimizes (what we call) its expected “cost of reporting”, thereby taking

zkt, d
0
t , and d1t as given. The cost of reporting consists of the punishment for misreporting (if

any) and bribe-related expenses (payment or cost of fending the demand off). Since accepting

the bribe demand or fending it off is a binary choice, firm k proceeds as follows. For each of

the two options, it identifies the level of zrkt that minimizes the expected cost of reporting. It is

straightforward to identify the optimal choice of zrkt if the demand is fended off. Since the cost

of fending it off is β̂zkt, and therefore independent of zrkt, it follows immediately that sticking

to the truth (i.e., zrkt = zkt) minimizes the expected cost of reporting. So, if firm k chooses to

fend of the bribe demand, the expected cost of reporting is simply β̂zkt.

Otherwise, if the bribe demand is accepted, firm k has to solve the minimization problem

min
zrkt

{
πd (zkt − zrkt)

2
+ (d0t + d1t z

r
kt)
}
. (60)

The objective function in problem (60) is strictly convex. Its solution is

zrkt = zkt −
1

2

d1t
πd
, (61)

an expression we assume to be non-negative (which is verified below). Given this, a simple

calculation yields that accepting the bribe demand means an expected cost of reporting of

d0t + d1t zkt −
[
(d1t/2)2/πd

]
. In the baseline setup, we assume that firms prefer accepting the
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bribe demand to fending it off if the costs are the same. Here we stick to this assumption.

Firm k therefore prefers paying the bribe if and only if

d0t + d1t zkt −
[
(d1t/2)2/πd

]
≤ β̂zkt. (62)

Now consider the corrupt official. Anticipating how firms will respond to bribe demands, the

official chooses (d0t , d
1
t ) so as to maximize expected bribe payments—subject to the constraint

that the resulting bribe tariff does not drive any firm into fending off a demand. From the

discussion in the preceding paragraph we know that an arbitrary firm k ∈ Rt accepts the

bribe demand if and only if condition (62) is satisfied. It is easy to see that the two sides of

condition (62) are identical if d0t =
[
(d1t/2)2/πd

]
and d1t = β̂. In graphical terms, both sides

are linear functions of zkt with a slope of β̂. Therefore, condition (62) holds with equality

for any possible value of zkt ≥ zkt > 0, where zkt is the lower bound on zkt in period t. In

fact, from the perspective of the corrupt official, this (d0t , d
1
t )-combination is the optimal one.

As a graphical analysis immediately shows, other combinations either imply that there are

zkt-ranges for which condition (62) is violated (positive chance that a bribe demand is fended

off) or that condition (62) is non-binding for any possible value of zkt (bribe extracted always

lower than under the optimal combination). So, in equilibrium,

(
d0t , d

1
t

)
=
(

(β̂/2)2/πd, β̂
)
, (63)

which implies

dkt =
(β̂/2)2

πd
+ β̂ · zrkt and zrkt = zkt −

1

2

β̂

πd
. (64)

As a result, for firm k ∈ Rt, the equilibrium expected cost of reporting (which now consists

of the bribe payment plus the expected fine due to misreporting) is simply given by β̂zkt, i.e.,

by the same magnitude as in the baseline setup (with π = 1). At this point, also note that

the statistical office’s estimate of average total firm output, Zpt , is as informative as it is in

the baseline setup: as the statistical office understands the official’s and the firms’ decision

problems, it can simply infer the actual output levels from the reported magnitudes via the

corresponding expression in equation (64).

The fact that the expected cost of reporting is unchanged implies that firms’ investment

incentives are unchanged, too. In particular, firms still solve maximization problem (11), where

β = β̂ since π = 1. So y∗it is again given by equation (13). Because of this, and since there

is no difference in the properties of Zpt , the government’s incentives do not change either. So

the rest of the analysis is as in the baseline setup, too. Thus, in the end, we obtain the same

equilibrium level of technical statistical capacity, p∗∗.
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To close the formal discussion, we return to equation (61), in the context of which we

assumed zrkt to be non-negative. This requires min {zk1, zk2} ≥ β̂/(2πd). As the minimum value

of ζkt is 0, zkt is given by the minimum value of y∗it. The lowest possible modern-technology

output materializes in period 2, in the case of P2 6= S. Then, y∗k2 = Âl
[
α
(

1− p∗∗β̂
)]α/(1−α)

,

where Âl is given by equation (27). So zrkt ≥ 0 requires

Âl
[
α
(

1− p∗∗β̂
)]α/(1−α)

≥ 1

2

β̂

πd
, (65)

a condition that holds for sufficiently small values of β̂.

We conclude that misreporting leaves the substance of the analysis in the main text un-

changed. Still, there are two notable differences to the equilibrium in the baseline setup. First,

the possibility of misreporting reduces the amount of bribes the corrupt official can extract.

The difference is equal to the total amount of fines for misreporting. Second, since the corrupt

official applies a two-part tariff, bribes as a share of reported output, dkt/z
r
kt, decreases in

zrkt. This is consistent with recent evidence presented by (Bai et al., 2019), who show that in

Vietnam smaller firms pay higher bribes as a percentage of income.
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