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Abstract

This paper examines the effectiveness of terrorist propaganda at influencing public opin-
ion in a conflict setting. From 2015 until the present, we examine various propaganda
activities by ISIS in Afghanistan, including the circulation of video/print material, radio
broadcasts, graffiti, and night letters. We leverage unique military-sourced microdata
on propaganda activities and public opinion. These data are supplemented with ad-
ditional sources providing a rich array of district- and household-level characteristics.
With supervised machine learning we build a prediction model for the emergence of
ISIS propaganda across Afghanistan. We then invoke various identification strategies
to measure the impact of local and global propaganda on public opinion towards ISIS.
We identify the impact of local ISIS propaganda by exploiting the construction/de-
struction of an ISIS radio tower in East Afghanistan. We identify the local impact
of global propaganda by exploiting the precise timing of video/print material release,
relative to household survey dates.
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1 Introduction

Following the emergence of the Islamic State of Iraq and Syria (ISIS) in 2014, the group
enjoyed territorial conquests in Iraq, Syria, Libya, Nigeria, Egypt, and Afghanistan (Jones
et al., 2017). The rise of ISIS in Afghanistan, from mid-2014 until the end of 2015, was fol-
lowed by significant contraction throughout 2016. Nevertheless, between January 2017 and
October 2018, ISIS conducted more than 84 attacks killing 819 civilians across 15 Afghan
provinces (Center for Strategic and International Studies, 2018). ISIS attacks in Afghanistan
still persist in late 2020, even within the centeral government’s seat of power in Kabul (Clay-
ton, 2018; Reuters Staff, 2020).

The survival of ISIS, like that of all terrorist organizations, is crucially dependent upon
local support in their area of operation (Department of the Army, 2007). For its part,
ISIS operates a vast network of global and local propaganda activities (see e.g., Gambhir,
2016). These include (but are not limited to): video distribution, magazine publication (print
and online), and radio broadcasts. The extent to which these activities bear on household
approval of ISIS across Afghanistan is the topic of our study.

To understand the local pattern of emergent ISIS propaganda activity, we build a pre-
diction model leveraging supervised machine learning. For this exercise we assemble data on
190 district characteristics across various fields of influence (e.g. economic conditions, secu-
rity, quality of institutions, geography, etc). By comparing the predictive power of distinct
variable groups, we identify factors most relevant for the emergence of ISIS propaganda in
Afghanistan. Our findings suggest that levels of economic and institutional development are
not powerful predictors of propaganda targeting. Aid flows and combatant support, on the
other hand, do meaningfully predict the spatial allocation of terrorist propaganda.

Following our descriptive work on the local targeting of ISIS propaganda, we examine
its effectiveness. We find correlational evidence suggesting ISIS has successfully boosted
their local image through these propaganda initiatives. In ongoing work, we significantly
strengthen identification by locating an ISIS radio tower in East Afghanistan and calculating
its spatial reach across three provinces. In particular, we conduct a panel analysis examin-
ing the impact of local ISIS propaganda activity on public opinion outcomes. Specifically,
this approach uses an established identification strategy of leveraging topography to iso-
late exogenous variation in exposure to radio broadcasts (see e.g., Olken, 2009; DellaVigna,
Enikolopov, Mironova, Petrova, and Zhuravskaya, 2014; Yanagizawa-Drott, 2014; Armand,
Atwell, and Gomes, 2020). The construction of the ISIS radio provides an opportunity to
identify the impact of local propaganda messaging on the opinions of households within the

radio’s catchment area. Next we examine the local impact of global propaganda strategies



- the release of video and print material online. We match the day of video/photo release
with household interview dates to measure the short-term impact of global propaganda on
household views within Afghanistan. Thus far our findings suggest this globally targeted
material adversely affects opinions toward ISIS among Afghan households.

A growing literature has explored media persuasion and the effectiveness of propaganda.
Previous research determined that the political slants of US newspapers are ineffective at
influencing voter perceptions (Gerber, Karlan, and Bergan, 2009; Chiang and Knight, 2011;
Gentzkow, Shapiro, and Sinkinson, 2011). On the other hand, bias in television media has
been shown to influence political preferences under democracies (DellaVigna and Kaplan,
2007; Durante, Pinotti, and Tesei, 2019; Martin and Yurukoglu, 2017) and weak institutions
(Enikolopov, Petrova, and Zhuravskaya, 2011; Knight and Tribin, 2019).

Propaganda efforts by nefarious actors have also been shown to influence political and
ideological preferences, with extremely deleterious consequences. DellaVigna et al. (2014)
show that exposure to nationalistic Serbian radio in Croatia contributed to ethnic extrem-
ism. Adena et al. (2015) document how Nazi radio facilitated party recruitment and the
consolidation of dictatorship, while inciting anti-Semitism among the citizenry. Yanagizawa-
Drott (2014) documents the role of radio broadcasts in exacerbating the Rwandan genocide.
And Miiller and Schwarz (2019) show that anti-refugee social media posts by the far-right
AfD party led to violent hate crimes against refugees in Germany.

While the above studies focus on propaganda efforts of legitimate state and media actors,
we contribute by examining propaganda by a terrorist organization. A nascent literature
focuses on the success of counterinsurgency information campaigns at inducing defections
(Armand, Atwell, and Gomes, 2020) and garnering intelligence (Sonin and Wright, 2019).
Our paper complements this work by studying the flipside of the COIN — the effectiveness
of terrorist propaganda. We identify the impact of global and local ISIS propaganda on
political preferences and ideological extremism. We also explore the conditions (at district
and household level) under which ISIS propaganda is more or less effective.

Notably, Mitts (2019) and Mitts, Phillips, and Walter (2021) have shown that ISIS at-
tacks in Europe and online propaganda efforts contributed to greater online support for ISIS
among global Twitter users. Our study is differentiated from these works by focussing on
local support for ISIS within the conflict theater where they are based. As local support is
crucial for the survival of any insurgent group, understanding the local success of terrorist
information campaigns is of critical importance to governments, policymakers, and militaries
in conflict settings. The continued emergence of radical insurgent groups with increasingly
global presence further underscores the importance of this topic.

The remainder of this article is structured as follows. Section 2 introduces our data.



Section 3 develops a cross-sectional prediction model for local ISIS propaganda activity.
Section 4 (5) examines examines the impact of local (global) propaganda on measures of

domestic support. Finally, section 6 concludes.

2 Data

This project leverages a trove of unique granular data from Afghanistan. In the subsections

below, we introduce the myriad sources of information drawn upon for our analysis.

2.1 Public opinion

We possess extensive public opinion poll data by virtue of a pilot data-sharing agreement with
NATO. Since 2008 the military alliance has commissioned a local survey company (ACSOR)
to conduct nationwide polls on a quarterly basis, gathering information on household opinions
of security conditions and conflict actors. Our analysis thus far focuses on two main outcome
variables from this questionnaire: (i) “Do you think the arrival of Da’esh would be a good thing
or a bad thing for Afghanistan?”, and (ii) “Does Da’esh respect the religion and traditions of
Afghans?”. Household responses are on a 5- and 4-point scale, respectively, and ordered such
that higher values reflect greater tacit approval of ISIS. Time series of nationwide average
responses to these questions are depicted in Figure 1. Descriptive statistics for all variables

in our analysis are provided in Table 1.

2.2 ISIS activity

2.2.1 Local propaganda

The abovementioned ANQAR survey data also contain information on the extent of local
ISIS propaganda known to households. From March 2015 onward, the ANQAR survey asked
households whether they witnessed any of the following activity by ISIS: publications (e.g.
magazines or leaflets), radio broadcasts, black Da’esh flags or grafitti, and night letters.!
From the survey responses we encode a binary household-level indicator for each type of
activity. Then we construct a discrete count variable at the household level, reflecting the
intensity of local ISIS activity known to that household by aggregating the abovementioned
indicators. Figure 2 exhibits spatial variation in this measure of local ISIS propaganda by

district during 2015, expressed in quartiles. Rather than being regionally concentrated, there

1 The exact questionnaire phrasing was “Have you heard of any of the following indicators of Da’esh activity
in your mantaqa?”



is surprisingly rich spatial variation in local ISIS propaganda across Afghanistan. Descriptive

statistics are again offered in Table 1.

2.2.2 1ISIS radio

Through qualitative research we identify the location and timing of an ISIS radio tower
built and destroyed several times in East Afghanistan. Figure 1 reflects our knowledge thus
far on the timing of events related to this tower. For periods of operation we construct a
measure capturing the radio signal’s reach in the region. We follow Yanagizawa-Drott (2014)
and calculate the Longley-Rice model for radio propagation (Irregular Terrain Model, ITM).
Based on descriptions of an earlier tower used by ISIS in Achin, Nangarhar, we estimate the
height of the radio transmitter (antenna) as 30 feet. We use plausible values for portable
transmitters (30 MHz at 300 Watts). Transmitters of this type would be fairly inexpensive
and accessible. We estimate the location of the tower based on military records of an aerial
bombardment that occurred in the district at the approximate time the radio went off the air.
To calculate the ITM propagation, we follow Armand, Atwell, and Gomes (2020) and use the
cloud-based platform CloudRF.com. We estimate the likely signal using a five foot receiver
and a threshold of 25 dBuVm (at the recommendation of CloudRF’s lead engineer). Figure
3 displays the outcome of the I'TM with regions in red indicating signal exposure to the IS-K
radio tower. Based on the distribution of radio reach we calculate two measures. First, we
calculate the share of each district with signal exposure to the IS-K tower. Second, we create
a population weighted measure. Population weights are derived based on the location and
population of Afghan settlements from SEDAC. We weigh radio signal by the population

that is exposed to the signal as a share of the total district population.

2.2.3 1ISIS videos

To understand ISIS’ global video propaganda activity, we rely primarily on the IntelCenter
Database - a subscription platform cataloguing thousands of videos, audio clips, and pictures
released by a number of terrorist groups, including ISIS.? We import data on 3,335 videos
released between 2014 and 2018, including date of release, country of focus, language, and
content keywords. Based on content keywords we further subdivide videos reflecting violence,
state capacity, and religion. A time series for video types released by survey wave is provided

in Figure A.1.% In a subsequent draft we plan to also incorporate thousands of still images

2 Available at https://www.intelcenter.com.

3 Some videos are tagged with vague content keywords precluding them from categorization. Those videos
have been temporarily assigned to our smallest category - religion. In general, our present categorization
is tentative in that we are in communication with IntelCenter regarding viable means of identifying video
content.



accompanied with audio released by ISIS. Language and country breakdowns for both videos
and stills are offered in Tables A.2 and A.3.

To supplement this primary measure of global video propaganda, we also build a list of
‘popular’ videos. For this we include those listed in the Wilson report (The Wilson Center,
2019), which contains a detailed list of events concerning ISIS from 2014-2018. We further
include ‘popular’ videos discovered through our own online research. In gathering the latter,
we checked for the following information: (i) the number of results obtained through a Google
search of the video, and (ii) the number of news articles related to the video found in Factiva
(filtering for five major journals: Al-Jazeera, Reuters, CNN, BBC and AP). Videos with at
least 10 results in either Google or Factiva are regarded as having high media coverage. The
time series for propaganda videos is presented in Figure A.2; where we distinguish between

all videos reported by IntelCenter and popular videos fulfilling the abovementioned criteria.

2.3 Mobile Coverage

Vector data on mobile network coverage for GSM/2G and 3G is available from Collins
Bartholomew (2021). This data includes all coverage areas reported to the company by
April 2015 GSM/2G refers to the second generation of mobile networks based on the
Global System for Mobile Communications, while 3G refers to the third generation of wire-
less technology. 2G allows for voice call and message applications, whereas 3G (UMTS)
enables video conferencing and mobile TV. Figure 4 displays mobile coverage based on GSM
and 3G networks current for 2015. To construct a population-weighted measure of mobile
coverage, we combine the network data with 2015 global population raster data from SEDAC.
Population data is at a 30 arc-second resolution (equal to 1 km at the equator). We take
the sum of all grid cells whose centroids are within a district boundary in order to calculate
district population. Once the centroid of a 30 arc-second grid cell is within the polygon of
either the 3G or GSM network coverage, we regard the population of this grid cell as having
access to the signal. We then sum over grid cell populations in the coverage area, and divide

by district population to yield the share of inhabitants with mobile coverage per district.

2.4 District and household characteristics

We collect district and household characteristics from a host of additional sources. First,
we have obtained US military conflict data covering over 200,000 conflict events in theater

since 2001. Second, we possess rare hardcopy data on the provision of aid in Afghanistan,

4 For 3G, this is in fact the earliest data entry (i.e., prior to April 2015, no network operator submitted any
information on 3G coverage to the company).



covering over 100,000 projects funded by 38 separate donors. Third, we obtained survey data
on household vulnerability (NRVA) for 2005, 2007/8, and 2011. Fourth, we possess annual
Asia Foundation survey data on public opinions across various domains of interest. Fifth, we
have manually collected extensive measures of opium cultivability and production. Sixth, we
leverage the ANQAR surveys for various household characteristics. And finally, we include

additional piecemeal data on physical geographic characteristics, ethnicity, and more.

3 Spatial selection of local propaganda

Prior to exploring the effectiveness of ISIS propaganda at influencing local perceptions, we
first examine the underlying spatial pattern of local propaganda activity. Accordingly, our
analysis begins with a cross-sectional study of the correlates of local ISIS propaganda in
Afghanistan. The outcome variable for this exercise is based on a composite measure of
household-reported ISIS activity (see section 2.2.1). For each district sampled in 2015, we
take the average response across households as our outcome for a cross-sectional prediction
model. Figure 2 maps the spatial distribution of local propaganda, limited to the 317 districts
for which covariate predictors are available.’?

The academic literature to date offers little concrete guidance (theoretical or empirical)
for constructing priors regarding determinants of terrorist propaganda. From the broader
conflict literature we therefore identify eight potential ‘fields of influence” which conceivably
impact the local presence of ISIS. As broad conceptual categories, these are encapsulated by
the following labels: combatant support, development aid, political /ideological preferences,
crime and corruption, security conditions, economic conditions, quality of institutions, and
(immutable) geography. For each of these domains we gather a host of distinct character-
istics measured at the district level (see section 2.4). By combining these data sources, we
produce a cross-sectional dataset covering 80% of Afghanistan’s 398 districts. The cross-
section is centered around 2010, and includes 190 district-level characteristics in total (listed
by category in tables OA.1 — OA.8).

The breadth of theoretically sound determinants of ISIS activity far exceeds the amount
of covariates feasibly accounted for with a standard regression model. We therefore adopt
a supervised machine learning technique to narrow down our set of predictors. Specifically,

we invoke the Lasso model which minimizes the sum of squared errors, but with a penalty

5 At the district level, the mean of our composite measure for local propaganda is 0.8, whereas the minimum
and maximum values are 0 and 3.4, respectively.



term added to reduce the absolute sum of coefficient magnitudes.® By penalizing coefficient
magnitudes during optimization, the impact of many covariates is reduced to zero. The
model’s output therefore includes only the subset of covariates most important for predicting
the emergence of local ISIS propaganda. These results are not to be interpreted causally,
but they nevertheless shed light on potentially important factors related to ISIS targeting
practices.

To gauge the importance of each field of influence, we develop the following approach
combining insights from Bazzi et al. (2019) and Colonnelli, Gallego, and Prem (2020). First
we predict ISIS intensity across all districts by using its nationwide empirical mean. The
baseline RM SE® (root mean squared prediction error) associated with this prediction model
is simply the standard deviation of the outcome. Next we invoke the Lasso to build a
prediction model using covariates limited to a single field of influence ¢.” The corresponding
RM S E* is calculated by comparing observed with predicted values of ISIS propaganda in each
sample district. The difference (RMSE*~RMSE") then serves as a measure of importance
for the field of influence c¢. We recalculate this measure of importance for 2000 bootstrap
samples.® Figure 5 illustrates the resulting distributions for the importance of each field of
influence.

In Figure 5 we find security conditions collectively constitute the weakest field of influ-
ence on local ISIS propaganda. In other words, spatial targeting of propaganda efforts do
not appear meaningfully driven by instability or conflict dynamics. We observe the strength
of judicial/health/educational institutions as the second-least important field of influence,
followed by local economic conditions. The level of development is therefore a relatively poor
predictor of local ISIS propaganda activity. This finding suggests ISIS was not disproportion-
ately targeting the underserved or underprivileged when attempting to leverage local support
in Afghanistan. Corruption and crime are related to both institutional quality and security

conditions, and this field of influence is also less important than fixed geographical character-

Specifically, we optimize: min,&,\{Zf\Llyi — X;B%} s.t. Zle 8] < A, where j indexes P candidate
predictors. The size of the penalty (\) is chosen to minimize out-of-sample prediction error using 10-fold
cross-validation.

Following the optimization, only a subset of covariates within each field are selected as predictors.

The resulting distribution of importance is a more reliable measure than individual covariate point estimates
based on the original sample draw. As with many supervised machine learning prediction algorithms, the
importance of individual covariates is quite sensitive to sample composition. See Figure 2 of Mullainathan
and Spiess (2017) for a concrete illustration of this phenomenon.



istics.” Importantly, development aid and combatant support constitue the most important
predictors of ISIS propaganda.'® The latter finding suggests we need to carefully account for
possible reverse causation when later estimating the impact of ISIS propaganda on measures
of ISIS support. Interestingly, these field of influence (alongside geography) may additionally
serve to amplify the effectiveness of terrorist propaganda (thereby justifying ISIS’ spatial
allocation according to these criteria). In sum, through this exercise we may attach (implicit
or explicit) upper bounds on the importance of omitted variable bias from some fields of
influence, highlight the suggested threat of reverse causation from combatant support, and

reveal candidate sources of heterogeneity for the effectiveness of ISIS propaganda.

4 Local propaganda and local perceptions

As a first step in understanding how local ISIS propaganda influences domestic support for
the group in Afghanistan, we test for cross-sectional correlations between awareness of local

propaganda and public opinion outcomes. To this end we estimate:

(1) Yiaw = Bo + 51 Piaw + B2 Xidw + 0d + Wy + €iaw

Here Y4, reflects the degree of ISIS support expressed by individual ¢ in district d during
survey wave w (see section 2.1 for detail on outcomes). P4, captures local ISIS propaganda
activity known to individual ¢ (see section 2.2.1); X4, constitute household controls (i.e.
ethnicity, age, educational attainment, and income); § and w capture district and wave fixed
effects; and errors (€) are clustered at the district level.

To reflect the intensity of local ISIS activity, propaganda is measured as a discrete count
variable in column 1 of Table 2. The results of that column suggest survey respondents aware
of more local ISIS propaganda express greater approval for the group’s arrival in Afghanistan.
Columns 2-5 consider each propaganda activity (publications, radio broadcasts, black Da’esh
flags, night letters) separately. The strong positive correlation from column 1 persists across
all types of local propaganda. Columns 6-10 introduce our second measure of household sup-

port. Column 6 suggests households subject to greater local ISIS propaganda more strongly

9 We can calculate bounds for omitted variable bias related to fixed geographical characteristics by observing,

for example, coefficient/R? movements when including district fixed effects in our panel analysis later on.
That amount of bias may then constitute an upper bound for time-varying omitted variable bias from less
important fields of influence revealed here (e.g. economic conditions, institutions, security). In a similar
spirit, Bazzi et al. (2019) draw strong conclusions when comparing the predictive power of time invariant
and (cross-sectional) time variant characteristics within a Lasso framework.

10Recall our cross-sectional determinants are centered on 2010 while (in the present section) ISIS propaganda
is measured for 2015.



believe ISIS respects the religion and traditions of Afghans. Again, the effect remains stable
when we consider each activity separately in columns 7-10. The foregoing correlations are
based on survey measures of propaganda awareness, however, and are therefore prone to

subjective response bias (see e.g., Child and Nikolova, 2020).

4.1 Radio-tower in Nangarhar

To strengthen identification we next analyze the impact of local radio propaganda in Nan-
garhar. As described in section 2.2.2, we exploit information on an ISIS radio tower estab-
lished (and subsequently destroyed) in the province. Although the location of the tower is
not random, the strength of the radio signal reaching population settlements in the region
can be considered exogenous and depends largely on the local topography /terrain. Based on
our parameterization, the radio signal’s reach is illustrated in Figure 3.

For our estimation we will use a difference-in-differences (DiD) approach based on the

following model:

(2) }/z’dw - BO + Blﬂ + BQPw + ﬁ3ﬂ * Pw + 54Xz'dw + 6(1 + Wy + €idw

where Y4, reflects the degree of ISIS approval by individual 7 in district d interviewed in wave
w; T; indicates the household falls within broadcast range; and P,, indicates whether the radio
was transmitting during wave w. The coefficient 3 therefore captures our effect of interest
(i.e. the impact of residing in the broadcast zone during a period of transmission). Presently
we are attempting to resolve uncertainty surrounding the broadcast timeline depicted in

Figure 1.

5 Global video release and local perceptions

Next we begin to explore differences in reception between locally targeted propaganda efforts
(as above) and global media campaigns (as below). We begin this analysis by running a simple
regression model investigating the impact of global video releases on household approval of
ISIS. Notably, the online circulation of ISIS videos varies on a daily basis. We interact our
measure of video release with cross-sectional variation in access to mobile networks. In this
respect, we rely on information about mobile coverage from Collins Bartholomew (2021). As
described in section 2.3, we calculate the share of district population with access to the 3G
network which (among other applications) permits users to watch videos. We expect the

exposure to global propaganda videos to be stronger among households inhabiting districts



with 3G network coverage. Alternatively put, households are more likely to see propaganda
videos when they live in an area falling within the 3G network. Our estimated model takes

the form:

(3) Yiarw = Bo + B1Viw + BoMg + Bs My * Vi + BaXidgrw + 0a + Wu + €idtw

Here V,,, refers to the number of ISIS propaganda videos released in the month preceding

" Column 1 of Table 3 Panel A reports results from

interview day t of survey wave w.
estimating equation 3, while columns 2 and 3 are presented for robustness. Column 2 serves
to provide a potentially more suitable counterfactual by using only households with GSM
network coverage as our reference category. By restricting our sample to districts with non-
zero mobile coverage, we help control for the possibility that mobile adoption (and not 3G
per se) is ultimately the source of any heterogeneous effects. Along similar lines, given the
high correlation between mobile networks and economic development, in column 3 we allow
the impact of ISIS videos to vary also according to nightlights. Columns 4-6 repeat the
exercise for our second outcome of interest. In none of the table’s columns do we find strong
evidence for a differential impact of ISIS videos on attitudes towards ISIS among households
with 3G access.!?

In Panel B of Table 3 we replace the overall number of videos (reported by IntelCenter)
with the number of popular videos according to our additional sources (see section 2.2.3).
Interestingly, we find evidence that ISIS videos with popular global reach do in fact influence
local perceptions in Afghanistan. Of note, however, in columns 1-3 the direction of impact
runs contrary to local forms of propaganda activity by the same group. This discrepancy may
emanate from diverging informational content across different target audiences (between local
and global material). In column 5 however, we find evidence these videos still boost local
perceptions of the group’s consistency with Afghan traditions, even while dismaying citizens
of the desirability of ISIS’ emergence. Table B.2 reflects similar findings when aggregating
videos over a longer two-month period. The negative impact of global video releases on local
approval of ISIS is further explored below.

To strengthen identification we next investigate the short-term impact of global videos
by exploiting the exact dates of video release and survey enumeration. Specifically, we use
exact dates to associate each individual in our survey to the number of videos released the

day before their interview. Accordingly, we specify the following model:

11'We possess information on the exact date of each video release, and on the exact date of each interview.
12Tn effect, we obtain precisely estimated zeros in Panel A.

10



(4) Yiatw = Bo + Bi1Vie1 + B2Vi + 83Vie1 + BaXidtw + Qaw + €idgtw

Yiarw again reflects the degree of ISIS approval by individual ¢ in district d, interviewed on
day t of wave w. V; is the number of videos released by ISIS on day t.'* X4, represents
individual controls: age, gender, education and ethnicity. oy, represents district-wave fixed
effects. So we are comparing individuals surveyed during the same enumeration period with
the same district, differentiated only by the number of videos released just prior to their
interview. Finally, standard errors (¢) are clustered at the district level.

In column 1 of Table 4 we examine the next-day impact of global video releases on local
perceptions of ISIS in Afghanistan. When more videos are released just prior to the survey
enumeration date, respondents tend to report a lower approval rating for ISIS. In column
2, this effect holds conditional on controlling for videos released the day of (¢) and the day
after (t + 1) interviews. Figure 6 further demonstrates that placebo event days immediately
preceding our period of interest do not yield similar effects. In columns 3-4 we repeat the
same exercise using instead a binary indicator for videos released each day. Our result is
robust to this alternative formulation. Next in columns 5-8 we test the impact of video
release on our alternative measure of local support, and find no significant effects.

To further unpack the significant finding above, we next explore heterogeneous effects by

specifying the following model:

(5) Yiarw = Bo + B1Vie1 + BoHigrw + B3Vie1 Higrw + BaXiarw + Qdw + Eidew

Here H4,, represents a characteristic of interviewee i from district d (interviewed on day t
of wave w). The coefficient B3 captures effect heterogeneity along dimension H, while X4,
again collects individual controls (with errors clustered by district).

Table 5 presents results for our heterogeneity tests across various characteristics of in-
terest. Thus far we find no evidence to suggest the impact of global propaganda videos on
local perceptions of ISIS varies according to age, gender, educational attainment, or ethnicity.
Thus, in Table 6 we explore effect heterogeneity stemming from district-level characteristics.
Here we invoke a model similar to equation 4 but with H varying only by district (hence —
Hgty). In columns 1-2 we find the impact of ISIS videos to be strongest in rural districts. In
columns 4-5 we find ethnic fractionalization and polarization to mitigate the adverse impact

of global propaganda efforts on local support for ISIS. The district-level variables in Table 6

13We drop the subscript w on V' to simplify notation.
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constitute geographical characteristics - an important field of influence explaining the spatial
allocation of local ISIS propaganda activity (recall from section 3). Therefore it would be
instructive to also test whether more important spatial predictors (i.e. development aid or
combatant support) also serve to amplify the impact of global and local propaganda efforts.

Finally, following Mitts, Phillips, and Walter (2021) we separate videos into content
categories. At present our classification relies on incomplete content keyword tags provided by
IntelCenter Database, and the resulting distribution of videos across violent, state capacity,
and religion categories is somewhat crude as a consequence. Nevertheless, we do find evidence
consistent with Mitts, Phillips, and Walter (2021) in that violent videos appear to drive the

negative impact on local support for ISIS. Tentative results are offered in Table B.3.

6 Conclusion

So far in this paper we examine the spatial correlates and public opinion consequences of
terrorist propaganda. We leverage rich spatiotemporal data on public opinion, ISIS propa-
ganda, and a host of district /household characteristics across Afghanistan. We introduce a
prediction model to identify categories of influence closely related to the targeting of local pro-
paganda activity (while also revealing relatively unimportant characteristics in this regard).
Subsequently, we examine the impact of local and global ISIS propaganda on measures of
local support within Afghanistan. We find that household approval measures increase dur-
ing periods of greater local propaganda activity. However, the contrary appears true when
examining the local impact of globally targeted propaganda initiatives.

In a subsequent draft we aim to identify the local conditions under which terrorist pro-
paganda is more or less effective. In this respect we can leverage results from our prediction
model in that strong predictors of propaganda activity may also serve as important sources
of effect heterogeneity. We also plan to invoke video and photo microdata to enhance our
theoretical contribution parsing local from global propaganda. In particular, we possess in-
formation on the language and target nation of ISIS videos, and this can be treated as an

important factor distinguishing local from global messaging campaigns.
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Figure 2: Spatial distribution of ISIS propaganda

High
Low
No data

Notes: ISIS propaganda is constructed based on ANQAR survey responses. For each household we sum
up the number of reported activities including graffiti, night letters, publications, and radio broadcasts.
District averages are then calculated from all households sampled in 2015, and the corresponding quartiles
are indicated in the figure. 80% (317) of Afghanistan’s 398 districts are covered in our cross-sectional
sample. The remaining 20% are excluded due to missing covariates. To arrive at our final sample, the
following backward stepwise procedure is conducted. Beginning with no covariates and all 398 districts, we
repeatedly include covariates with the broadest spatial coverage relative the current subsample. We stop

adding covariates once doing so would reduce spatial coverage below 80%.
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Figure 3: ISIS radio tower signal

Notes: Original information on radio tower signal based on the ITM as
explained in section 2.2.2. Areas in red indicate those with access to the
radio signal by ISIS radio tower. Districts with blue boundaries belong to
the province Nangahar, which is in the East of Afghanistan.
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Figure 4: Mobile Network Coverage: GSM and 3G

Notes: This map displays mobile network coverage based on data from Collins Bartholomew (2021) for the
year 2015. Areas in light blue have access to GSM and areas in green have access to 3G. For more details,
see section 2.3.
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Figure 5: Contributions to Prediction Accuracy
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Notes: This figure compares the importance of various fields of influence when predicting ISIS propaganda
activity. Each row reflects the distribution of RMSE® — RMSE° across 2000 bootstrap iterations. RMSE*
is calculated from the Lasso model using covariates from category c labelled in the corresponding row.
RMSE" is based on predictions using the observed empirical mean (0.8). Notches mark the 5% most
extreme observations at each end of the distribution.
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Figure 6: Coeflicients Plot: Propaganda Videos
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Notes: Graph displays model 4 including the contemporaneous effect, one lead and
one lag, illustrating results of table 4, column 2. Graph takes into account waves 28 to

33, included.
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Table 1: Descritive Statistics

Panel A: Individual Level

Summary Statistics

N Mean SD Min Max

Age 349350 34.95 1245 18 99
Male 349350 0.62  0.48 0 1
Binary: Education 349350 0.43  0.50 0 1
Binary: Pashtun 349350 0.42  0.49 0 1
ISIS Arrival Approved 130519 11.10 2098 O 100
ISIS Respects Traditions 129447 9.15 19.90 0 100
Local Propaganda 87575  0.61  0.97 0 4
Black Flag 87423  0.22  0.42 0 1
Night Letters 87109 0.10 0.30 0 1
Publication 87290  0.18 0.38 0 1
Radio Broadcasts 87177 0.12  0.32 0 1

Panel B: District Level

Summary Statistics

N Mean SD Min Max

Close City 349350 0.30  0.46 0 1
Urbanization 346698 0.20  0.36 0 1
Fractionalization 349350 0.29  0.25 0 1
Polarization 349350 043 0.34 0 1
Nightlight data per district 349350 540 1329 0 46
Opium 324622 0.03  0.11 0 1
3G 349350 32.82 4297 0 100
GSM 349350 74.66 35.42 0 100
Radio Signal 349350 142 2.56 0 10

Panel C: Videos

Summary Statistics

N Mean SD Min Max

Videos 236474 191 248 0 12
Videos (religious) 236474 0.00 0.05 0 1
Videos (violence) 236474 137 195 0 9
Videos (state capacity) 236474 0.33 0.69 0 4
Binary: Videos 236474 064 048 O 1
Popular Videos 236474 0.03 0.18 0 1
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Table 2: Local propaganda and ISIS approval

ISIS Approval ISIS Respects Traditions
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Local Propaganda 2.228*** 1.188*
(0.294) (0.323)
Black Flag 3.875* 1.812%**
(0.596) (0.661)
Night Letters 4.591%* 2.5437*
(0.762) (0.675)
Publication 1.618" 1.188*
(0.413) (0.639)
Radio Broadcasts 4.169** 1.838**
(0.645) (0.836)
Observations 85427 85281 84984 85158 85049 37640 37584 37477 37551 37520
Adjusted R? 0.155 0.153 0.152 0.150 0.152 0.153 0.153 0.153 0.152  0.153

Notes: Table reports results of equation 1. Data on outcome (ISIS approval) available from 2015 to 2018
included. Outcome variable standardized in range [0,100]. Data on outcome (ISIS respects traditions)
available from 2016 to 2018 included. Outcome variable standardized in range [0,100]. Analysis is based
on events that happened in Afghanistan. Baseline controls include age, gender, education level and ethnic
group. All models include district and time(wave) fixed effects. Standard errors in parentheses; clustered at
the district level.

*p < 0.10 * * p < 0.05 * x xp < 0.01
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Table 3: Global Propaganda and ISIS Approval
[Panel A: Videos|

ISIS Approval

ISIS Respects Traditions

(1) (2) (3) (4) () (6)

Videos x 3G -0.000  -0.000 -0.000* -0.000**  0.000  -0.000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Videos 0.066™*  0.039 0.066** -0.036  0.027  -0.037
(0.027) (0.030) (0.027) (0.034) (0.033) (0.034)

Videos x Nightlight 0.000* 0.000
(0.000) (0.000)

Observations 130461 75419 130461 129385 71287 129385
Adjusted R? 0.126 0.078 0.126 0.116 0.111 0.116
Joint significance (p-value) 0.014  0.189  0.015  0.283  0.418  0.277

[Panel B: Popular Videos]

ISIS Approval

ISIS Respects Traditions

(1) (2) (3) (4) (5) (6)

Popular Videos x 3G -0.014** -0.012* -0.013** -0.003  0.017**  -0.002

(0.004)  (0.007) (0.006) (0.005) (0.007) (0.007)
Popular Videos 0.757 -0.678 0.817  -0.020 -1.889* -0.025

(0.759)  (0.962) (0.711) (0.803) (0.952)  (0.806)
Popular Videos x -0.003 -0.003
Nightlight (0.010) (0.013)
Observations 130461 75419 130461 129385 71287 129385
Adjusted R? 0.126 0.079 0.126 0.115 0.111 0.115
Joint significance (p-value)  0.325 0.472  0.256  0.977  0.050  0.973

Notes: Table reports results of equation 3. Columns 2 and 5 restrict sample for districts with some access to
GSM. Data on outcome (ISIS approval) available from 2015 to 2018 included. Outcome variable standardized
in range [0,100]. Data on outcome (ISIS respects traditions) available from 2016 to 2018 included. Outcome
variable standardized in range [0,100]. 3G is a continuous variable indicating the share of population with
mobile coverage (2015). Nighlight inidicates nightlight data per district (2011). Joint significance tests if
Videos/Popular Videos (month before) + Videos/Popular Videos (month before) x 3G equal zero. Baseline

controls include age, gender, education and ethnic group. All models include district and time(wave) fixed

effects. Standard errors in parentheses; clustered at the district level.

*p < 0.10 * xp < 0.05 * *x xp < 0.01
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Table 4: Within Wave: Impact on ISIS Approval

ISIS Approval

ISIS Respects Traditions

(1) 2) (3) (4) (®)
Videos (t-1) -0.274  -0.254*
(0.0943)  (0.0988)
Videos (t) 0.0672
(0.0805)
Videos (t+1) -0.0182
(0.0729)
Binary: Videos (t-1) -0.607*  -0.602* -0.0739
(0.307)  (0.329) (0.300)
Binary: Videos (t) 0.0386 -0.0524
(0.325) (0.390)
Binary: Videos (t+1) -0.202 -0.513"
(0.384) (0.284)
Observations 130417 130417 130417 130417 129384
Adjusted R? 0.258 0.258 0.258 0.258 0.209

Notes: Columns 1 and 5 report results of equation 4 excluding videos released day of interview itself and
day after, columns 2 and 6 report results of equation 4. Models 3 (7) and 4 (8) correspond to columns 1 (5)
and 2 (6) but using a binary measure of videos releasing. Data on outcome (ISIS approval) available from
2015 to 2018 included. Outcome variable standardized in range [0,100]. Data on outcome (ISIS respects
traditions) available from 2016 to 2018 included. Outcome variable standardized in range [0,100]. Videos are
available from wave 25(2014) to 42(2018). Baseline controls include age, gender, education and ethnic group.

All models include district*time(wave) fixed effects. Standard errors in parentheses; clustered at the district

level.
*p < 0.10 * xp < 0.05 * * xp < 0.01
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Table 5: Within Wave: Heterogeneity at Individual Level

ISIS Approval

(1) (2) (3) (4)
Videos 0.181*  -0.231"* -0.253** -0.217**
(0.0978)  (0.0984)  (0.100)  (0.0991)

Videos x Age -0.00268
(0.00228)

Videos x -0.0689
Male (0.0995)

Videos x -0.0423
Education (0.0584)

Videos x -0.169
Pashtun (0.109)

Observations 130417 130417 130417 130417
Adjusted R 0.258 0.258 0.258 0.258

Notes: Table displays results for equation 5 including different types of heterogeneous
effects at the individual level. Column 1 shows interaction with interviewee age, column
2 interaction with gender, column 3 interaction with education binary and column 4 in-
teraction with pashtun indicator. Data on outcome (ISIS approval) available from 2015
to 2018 included. Outcome variable standardized in range [0,100]. Videos are available
from wave 25(2014) to 42(2018). Baseline controls include age, gender, education and
ethnic group. All models include district*time(wave) fixed effects. Standard errors in
parentheses; clustered at the district level.

*p < 0.10 * % p < 0.05 * *x xp < 0.01
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Table 6: Within Wave: Heterogeneity at District Level

ISIS Approval
(1) (2) (3) (4) (5)

Videos -0.445**  -0.410™*  -0.251"* -0.579"* -0.629"**
(0.115)  (0.112)  (0.0960)  (0.163)  (0.176)

Videos x 0.344**

Close City (0.132)

Videos x 0.306**

Urbanization (0.128)

Videos x -1.391

Opium (1.757)

Videos X 0.739*

Fractionalization (0.319)

Videos x 0.593**

Polarization (0.247)

Observations 130417 129505 123713 130417 130417

Adjusted R? 0.258 0.258 0.255 0.258 0.258

Notes: Table displays results for equation 5 including different types of heterogeneous effects at the district
level. Column 1 shows interaction with proximity to cities, column 2 with urbanization level in district,
column 3 with economic link to opium and columns 4 and 5 with a measure of ethnic fractionalization and
polarization of district, respectively. Data on outcome (ISIS approval) available from 2015 to 2018 included.
Outcome variable standardized in range [0,100]. Videos are available from wave 25(2014) to 42(2018). Base-
line controls include age, gender, education and ethnic group. All models include district*time(wave) fixed
effects. Standard errors in parentheses; clustered at the district level.

*p < 0.10 * % p < 0.05 * x xp < 0.01
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Table A.2: Descriptive Statistics: Videos’ language

Language Videos % Videos
Videos

Arabic 3017 90.46
English 68 2.04
Pashto 27 0.81
Other 223 6.69
Subtotal 3335 100
Stills

Arabic 2605 81.03
English 147 4.57
Pashto 164 5.10
Other 299 9.30
Subtotal 3215 100
Total 6550

Notes: The analysis takes into account videos released between waves 25 and 33,
included.

Table A.3: Descriptive Statistics: Videos’ location

Language Videos % Videos
Videos

Afghanistan 35 1.05
Iraq 1345 40.33
Syria 1458 43.72
Other 497 14.90
Subtotal 3335 100
Stills

Afghanistan 240 7.47
Iraq 189 5.88
Syria 11 0.34
Other 2775 86.31
Subtotal 3215 100
Total 6550

Notes: The analysis takes into account videos released between waves 25 and 33,
included.



Time-series: videos by categories

Figure A.1
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B Overall results

Table B.1: Local propaganda and ISIS approval
Remaining variables of Daesh activity

ISIS Approval ISIS Respects Traditions
(1) (2) (3) (4) (5) (6) (7) (8)
Recruiting 3.537 1.867**
(0.693) (0.856)
Supporters 3.720%* 2.838***
(0.619) (0.628)
Show of Force 4.153" 3.194%
(0.802) (0.744)
Conlflict 2.045** 0.966*
(0.535) (0.569)

Observations 85086 84986 85086 85062 37536 37519 37532 37528
Adjusted R* 0.152 0.152 0.152 0.150 0.153 0.153 0.153 0.152

Notes: Table reports results of equation 1. Data on outcome (ISIS approval) available from 2015 to 2018
included. Outcome variable standardized in range [0,100]. Data on outcome (ISIS respects traditions)
available from 2016 to 2018 included. Outcome variable standardized in range [0,100]. Analysis is based
on events that happened in Afghanistan. Baseline controls include age, gender, education level and ethnic
group. All models include district and time(wave) fixed effects. Standard errors in parentheses; clustered at
the district level.

*p < 0.10 * % p < 0.05 * x xp < 0.01



Table B.2: Global Propaganda and ISIS Approval
2-months window

[Panel A: Videos]

ISIS Approval ISIS Respects Traditions
(1) (2) (3) (4) (5) (6)

Videos x 3G -0.000"  -0.000  -0.000*** -0.000"** -0.000 -0.000**
(0.000) (0.000)  (0.000)  (0.000) (0.000) (0.000)

Videos -0.002  0.030 -0.010 0.011 0.021 0.011
(0.024) (0.019) (0.023)  (0.016) (0.017) (0.016)

Videos x Nightlight 0.000** -0.000
(0.000) (0.000)
Observations 130461 75419 130461 129385 71287 129385
Adjusted R? 0.126 0.078 0.126 0.116 0.111 0.116

Joint significance (p-value)  0.914 0.119 0.652 0.493 0.227 0.492

[Panel B: Popular Videos]

ISIS Approval ISIS Respects Traditions
(1) (2) (3) (4) (5) (6)
Popular Videos x 3G -0.008**  -0.010  -0.003 0.009* 0.019* 0.009
(0.004) (0.006) (0.004)  (0.005)  (0.008)  (0.006)
Popular Videos 0.244  -1.387 1.485  -4.255"*  -5.166™* -4.252**
(1.047) (1.084) (1.038)  (0.501)  (0.809)  (0.491)
Popular Videos x -0.023** -0.001
Nightlight (0.007) (0.011)
Observations 58001 33901 58001 38261 21144 38261
Adjusted R? 0.182 0.097 0.183 0.153 0.127 0.153

Joint significance (p-value)  0.821 0.197 0.153 0.000 0.000 0.000

Notes: Table reports results of equation 3. Columns 2 and 5 restrict sample for districts with some access to
GSM. Data on outcome (ISIS approval) available from 2015 to 2018 included. Outcome variable standardized
in range [0,100]. Data on outcome (ISIS respects traditions) available from 2016 to 2018 included. Outcome
variable standardized in range [0,100]. 3G is a continuous variable indicating the share of population with
mobile coverage (2015). Nighlight inidicates nightlight data per district (2011). Joint significance tests if
Videos/Popular Videos (two months before) + Videos/Popular Videos (two months before) x 3G equal zero.
Baseline controls include age, gender, education and ethnic group. All models include district and time(wave)
fixed effects. Standard errors in parentheses; clustered at the district level.

*p < 0.10 * % p < 0.05 * x xp < 0.01



Table B.3: Within Wave: Impact on ISIS Approval

ISIS Approval
(1) (2) (3) (4)

Videos -0.274
(0.0943)
Videos (religious) -0.877
(1.438)
Videos (violence) -0.336***
(0.116)
Videos (state capacity) -0.0308
(0.245)
Observations 130417 130417 130417 130417
Adjusted R? 0.258 0.258 0.258 0.258

Notes: Column 1 reports results of equation 4 excluding videos released day of in-
terview itself and day after, while the following models consider only videos of the
respective categories. Data on outcome (ISIS approval) available from 2015 to 2018
included. Outcome variable standardized in range [0,100]. Baseline controls include
age, gender, education and ethnic group. All models include district and time(wave)
fixed effects. Standard errors in parentheses; clustered at the district level.

*p < 0.10 * % p < 0.05 * x xp < 0.01
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